Math, asked by sneh81, 11 months ago

16:26
Q7 The circumferences of two circles are in the ratio 3:4, and then the ratio of their areas will be:
a.
9:16
13:4
C. 6.8
plz help​

Answers

Answered by Anonymous
13

\Large\underline{\underline{\bf \red{Correct\: Question}:}}

The circumferences of two circles are in the ratio 3:4, and then the ratio of their areas will be:

\Large\underline{\underline{\sf Given:}}

  • Ratio of Circumference of two circle \sf{(C_1:C_2)}=3:4

\Large\underline{\underline{\sf To\:Find:}}

  • Ratio of area of circles \sf{(A_1:A_2)}

\Large\underline{\underline{\sf Formula \: Used:}}

{\boxed{\boxed{\sf \pink{Circumference\:of\:Circle(C)=2πr}}}}

{\boxed{\boxed{\sf \pink{Area\:Of\:Circle(A)=πr^2}}}}

\Large\underline{\underline{\sf Solution:}}

\implies{\sf \dfrac{C_1}{C_2}=\dfrac{3}{4} }

\implies{\sf C_1=2πr_1 }

\implies{\sf r_1=\dfrac{3}{2π} }

\implies{\sf C_2=2πr_2}

\implies{\sf \dfrac{4}{2π}=r_2 }

\implies{\sf r_2=\dfrac{2}{π} }

Area of Circle (A) = πr²

\implies{\sf A_1=π\left(\dfrac{3}{2π}\right)^2}

\implies{\sf A_1=\dfrac{9}{4π^2}×π }

\implies{\sf A_1=\dfrac{9}{4π}}

\implies{\sf A_2=π \left(\dfrac{2}{π}\right)^2 }

\implies{\sf A_2=\dfrac{4}{π}×π }

\implies{\sf A_2=\dfrac{4}{π} }

Ratio of Areas :

\implies{\sf \dfrac{A_1}{A_2}=\dfrac{\dfrac{9}{4π}}{\dfrac{4}{π}}}

\implies{\sf \dfrac{A_1}{A_2}=\dfrac{9}{16} }

\Large\underline{\underline{\sf Answer:}}

Option (a) 9:16

⛬ Ratio of Areas is \bf{\dfrac{A_1}{A_2}=\dfrac{9}{16}}

Answered by naiduasn2009
6

Answer:

\huge\mathcal\pink{♡Añswer♡}

Given:

Ratio of Circumference of two circle \sf{(C_1:C_2)}

\Large\underline{\underline{\sf To\:Find:}}

Ratio of area of circles\sf{(A_1:A_2)}

\Large\underline{\underline{\sf Formula \: Used:}}

{\boxed{\boxed{\sf \pink{Circumference\:of\:Circle(C)=2πr}}}}

{\boxed{\boxed{\sf \pink{Area\:Of\:Circle(A)=πr^2}}}}

\Large\underline{\underline{\sf Solution:}}

\implies{\sf \dfrac{C_1}{C_2}=\dfrac{3}{4}}

\implies{\sf C_1=2πr_1}

\implies{\sf r_1=\dfrac{3}{2π}}

\implies{\sf C_2=2πr_2}

\implies{\sf \dfrac{4}{2π}=r_2 }

\implies{\sf r_2=\dfrac{2}{π}}

Area of Circle (A) = πr²

\implies{\sf A_1=π\left(\dfrac{3}{2π}\right)^2}

\implies{\sf A_1=\dfrac{9}{4π^2}×π }

\implies{\sf A_1=\dfrac{9}{4π}}

\implies{\sf A_2=π \left(\dfrac{2}{π}\right)^2}

\implies{\sf A_2=\dfrac{4}{π}×π}

\implies{\sf A_2=\dfrac{4}{π}}

Ratio of Areas :

\implies{\sf \dfrac{A_1}{A_2}=\dfrac{\dfrac{9}{4π}}{\dfrac{4}{π}}}

\implies{\sf \dfrac{A_1}{A_2}=\dfrac{9}{16} }

\Large\underline{\underline{\sf Answer:}}

Option (a) 9:16

Ratio of Areas is\bf{\dfrac{A_1}{A_2}=\dfrac{9}{16}}

\huge\mathbb{\underline{\underline{Follow Me}}}

Similar questions