16 8 (2,4) is differentiable function then,
lim f (2,4 + 3y ) - F(x,y
3y to
gy
B) af
AN
22f
dze 2
None of the above
of f
ay
Answers
Answer:
Find value of k.
2x
2
+kx−5=0 & x
2
−3x−4=0
→x
2
−3x−4=0
x
2
−4x+x−4=0
x(x−4)+1(x−4)=0
(x+1)(x−4)=0
x=−1 and x=4
→ one root is common
∴2(−1)
2
+k(−1)−5=0
∴2−k−5=0
∴k=−3
Or
2(4)
2
+k(4)−5=0
∴32+4k−5=0
∴k=
4
−27
Step-by-step explanation:
Plz follow me
Answer:
Step-by-step explanation:
Fundamental Theorem of Definite Integration
arrow-icon
∫baf(x)dx=ϕ(b)−ϕ(a)
arrow-icon
Examples: ∫42xx2+1dx
arrow-icon
Definite integration by substitution
arrow-icon
Examples: ∫10sin−1(2x1+x2)dx
arrow-icon
Property 1: Integration is independent of the change of variable. ∫baf(x)dx=∫baf(t)dt
arrow-icon
Property 2: If the limits of a definite integral are interchanged then its value changes. ∫baf(x)dx=−∫abf(x)dx
arrow-icon
Property 3: ∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx
arrow-icon
Property 4: If f(x) is a continuous function on [a,b] then ∫baf(x)dx=∫baf(a+b−x)dx
arrow-icon
Property 5: If f(x) is a continuous function defined on [0,a] then ∫a0f(x)dx=∫a0f(a−x)dx
arrow-icon