Math, asked by kumaranil17462, 2 months ago


16. A dealer sells a toy at a loss of 4%. If he had sold it for 180 more, he would have made
profit of 16%. Find the cost price of the toy.

Answers

Answered by mddilshad11ab
183

\sf\small\underline\green{Let:-}

\tt{\implies Cost\: price\:of\:toy=x}

\sf\small\underline\green{Given:-}

\tt{\implies Loss\:on\:selling=4\%}

\sf\small\underline\green{To\:Find:-}

\tt{\implies Cost\: price\:of\:toy=?}

\sf\small\underline\green{Solution:-}

\sf{\implies calculation\:for\:case-(i)}

\bf\small\underline{SP=?\:\:CP=x\:\:L=4\%:-}

\tt{\implies SP=\bigg[\dfrac{100-L\%}{100}\bigg]\times\:CP}

\tt{\implies SP=\bigg[\dfrac{100-4}{100}\bigg]\times\:x+180}

\tt{\implies SP=\bigg[\dfrac{96}{100}\bigg]\times\:x+180}

\tt{\implies SP=\bigg[\dfrac{96x}{100}\bigg]+180----(i)}

\sf{\implies calculation\:for\:case-(ii)}

\bf\small\underline{SP=?\:\:CP=x\:\:P=16\%:-}

\tt{\implies SP=\bigg[\dfrac{100+P\%}{100}\bigg]\times\:CP}

\tt{\implies SP=\bigg[\dfrac{100+16}{100}\bigg]\times\:x}

\tt{\implies SP=\bigg[\dfrac{116}{100}\bigg]\times\:x}

\tt{\implies SP=\bigg[\dfrac{116x}{100}\bigg]---(ii)}

\bf{\implies Case-(ii)=Case-(i)}

\tt{\implies \dfrac{116x}{100}=\dfrac{96x}{100}+180}

\tt{\implies \dfrac{116x}{100}-\dfrac{96x}{100}=180}

\tt{\implies \dfrac{116x-96x}{100}=180}

\tt{\implies \dfrac{20x}{100}=180}

\tt{\implies 20x=18000}

\tt{\implies x=900}

\sf\large{Hence,}

\bf{\implies The\:cost\: price\:of\:toy=900}

Answered by Anonymous
50

Given :-

A dealer sells a toy at a loss of 4%. If he had sold it for 180 more, he would have made  profit of 16%.

To Find :-

CP of toy

Solution :-

Let the CP of toy be x

We know that

\sf SP = \dfrac{(100-Loss\%)}{100}CP

\sf SP = \dfrac{100 - 4}{100}(x+180)

\sf SP = \dfrac{96}{100}x+180

\sf SP = \dfrac{96x}{100} + 180

Now

\sf SP = \dfrac{(100-profit\%)}{100}CP

\sf SP = \dfrac{100 + 16}{100} x

\sf SP  = \dfrac{116}{100}x

Now

116x/100 -  96x/100 = 180

20x/100 = 180

x/5 = 180

x = 180 \times5

x = 900

Similar questions