Math, asked by tushardelux, 6 months ago

16. A right circular cone is 3.6 cm high and the radius of its base is 1.6 cm.It is melted and recast into a right circular cone having base radius 1.2 cm. Find its height.​

Answers

Answered by TheVenomGirl
5

AnswEr :

 \\

We're given that, a right circular cone is 3.6 cm high and the radius of its base is 1.6 cm.

 \\

Diagram :

 \\

\setlength{\unitlength}{0.8cm}\begin{picture}(6, 4)\linethickness{0.26mm} \qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{3.6 cm}}\put(3,2){\line(0,2){4.5}}\put(1.4,1.6){\sf{1.6 cm}}\qbezier(.185,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture} \\  \\

Also, it is given that, the above cone is melted and recast into a right circular cone having base radius 1.2 cm.

 \\

Diagram :

 \\

\setlength{\unitlength}{0.8cm}\begin{picture}(6,4)\linethickness{0.26mm} \qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{h}}\put(3,2){\line(0,2){4.5}}\put(1.4,1.6){\sf{1.2 cm}}\qbezier(.185,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture} \\  \\

In the above diagram, we're supposed to find out the height of the cone.

 \\

We know that,

 \\

Volume of cone = \sf \dfrac{1}{3}πr²h

Now,

 \\

Let us assume that h be the height of the new formed cone. So,

 \\

Volume of 1st cone = Volume of 2nd cone [Cone is only melted and recasted]

\longrightarrow \sf \: V_1 = V_2 \\  \\  \\

\longrightarrow \sf \:  \dfrac{1}{3} \times \pi  \times {(1.6)}^{2} \times  3.6  = \dfrac{1}{3} \times \pi \times  {1.2}^{2}  \times h \\  \\  \\

\longrightarrow \sf \:   {(1.6)}^{2} \times  3.6  = {1.2}^{2}  \times h \\  \\  \\

\longrightarrow \sf \:  2.56 \times  3.6  =1.44 \times h \\  \\  \\

\longrightarrow \sf \:  h =   \dfrac{2.56 \times 3.6}{1.44}  \\  \\  \\

\longrightarrow \sf \:  h =   \dfrac{9.216}{1.44} \\  \\  \\

\longrightarrow \sf \:  { \large{ \underline{ \boxed{ \sf{ \purple{h =  6.4 \: cm}}}}}} \:  \:  \bigstar \\  \\

Therefore, height of the new formed cone is 6.4 cm .

 \\

⠀⠀⠀Additional information :

 \\

Curved surface area of a cone = πrl

 \\

Total surface area of a cone = πr(l+r)

 \\

• Value of l = √h² + r²

Similar questions