Math, asked by sriniwaas9681, 10 months ago

16 a to the power 4 - 54 a

Answers

Answered by mayajpisani
0

Answer:

 2a • (2a - 3) • (4a2 + 6a + 9)

Step-by-step explanation:

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 24a4 -  54a

Step  2  :

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :

  16a4 - 54a  =   2a • (8a3 - 27)

Trying to factor as a Difference of Cubes:

3.2      Factoring:  8a3 - 27

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into

             (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =

           a3+a2b+ab2-ba2-b2a-b3 =

           a3+(a2b-ba2)+(ab2-b2a)-b3 =

           a3+0+0+b3 =

           a3+b3

Check :  8  is the cube of  2

Check :  27  is the cube of   3

Check :  a3 is the cube of   a1

Factorization is :

            (2a - 3)  •  (4a2 + 6a + 9)

Trying to factor by splitting the middle term

3.3     Factoring  4a2 + 6a + 9

The first term is,  4a2  its coefficient is  4 .

The middle term is,  +6a  its coefficient is  6 .

The last term, "the constant", is  +9

Step-1 : Multiply the coefficient of the first term by the constant   4 • 9 = 36

Step-2 : Find two factors of  36  whose sum equals the coefficient of the middle term, which is   6 .

     -36    +    -1    =    -37

     -18    +    -2    =    -20

     -12    +    -3    =    -15

     -9    +    -4    =    -13

     -6    +    -6    =    -12

     -4    +    -9    =    -13

For tidiness, printing of 12 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!

Similar questions