Math, asked by aditibasnett021, 9 months ago

16. An an equilateral triangle, prove that three times the square of one side is equal to four
times the square of one of its altitude s​

Answers

Answered by Anonymous
20

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow \text{ an equilateral triangle,having one altitude .}

\sf\therefore \text{ let the side of triangle be x }

\sf\therefore QS= SR= \dfrac{QR}{2} = \dfrac{x}{2}\:------\boxed{1}

\large\underline\bold{TO\:PROVE,}

\sf\dashrightarrow \text{ three times the square of one side is equal to the four times the square of one of its altitude.}

\sf\therefore that\:is ,\\ 4(PS)^2=3x^2

\large\underline\bold{SOLUTION,}

\sf\star IN\: \triangle PRS ,

\sf\therefore \text{ by Pythagoras theorem,}

\sf\therefore PR^2= PS^2+SR^2

\sf\implies (x)^2= PS^2+ \bigg( \dfrac{x}{2} \bigg)^2 \:-----\boxed{from\:1}

\sf\implies x^2=PS^2= \dfrac{x^2}{4}

\sf\implies -PS^2= \dfrac{x^2}{4} -x^2

\sf\implies -PS^2= \dfrac{x^2-4x^2}{4}

\sf\implies -4PS^2= -3x^2

\sf\implies \cancel{-}\:4PS^2= \cancel{-}\:3x^2

\sf\implies 4PS^2=3x^2

\large{\boxed{\bf{ \star\:\:4PS^2=3x^2 \:\: \star}}}

\large\underline\bold{HENCE,PROVED.}

____________________

PLEASE REFER THE ATTACHMENT.

Attachments:
Similar questions