Math, asked by tiyasapoddar9, 4 months ago

16. Event A and B are such that P(A)=0.5 ,P(B)=0.25 and P( ∩ ) =

0.125. Find P(not A and not B).​

Answers

Answered by mathdude500
4

Given Question:-

  • Event A and B are such that P(A)=0.5 ,P(B)=0.25 and P(A ∩ B ) = 0.125. Find P(not A and not B).

─━─━─━─━─━─━─━─━─━─━─━─━─

Answer

─━─━─━─━─━─━─━─━─━─━─━─━─

Given :-

  • P(A)=0.5
  • P(B)=0.25
  • P(A ∩ B) = 0.125.

─━─━─━─━─━─━─━─━─━─━─━─━─

To Find :-

  • P(not A and not B).

─━─━─━─━─━─━─━─━─━─━─━─━─

Formula Used :-

\sf \:  1. \:  P(A∪B) \: = \: P(A) \:  + \:  P(B) \:  -  \: P(A∩B)

\sf \:  2. \: P({\overline A \:}∩{\overline B } )= 1 \:  -  \: P(A∪B)

─━─━─━─━─━─━─━─━─━─━─━─━─

Solution :-

☆ P(A)=0.5

☆ P(B)=0.25

☆ P(A ∩ B) = 0.125

☆ We know that

\large\underline\red{\bold{❥︎Step :- 1 }}

\sf \:  P(A∪B) \: = \: P(A) \:  + \:  P(B) \:  -  \: P(A∩B)

\sf\implies \:P(A∪B) = 0.5 + 0.25 - 0.125

\sf\implies \:P(A∪B) = 0.625

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 2 }}

\bf \:  ⟼   \: P({\overline A \:}∩{\overline B } )= 1 \:  -  \: P(A∪B)

\sf\implies \:\sf \: P({\overline A \:}∩{\overline B } )= 1 \:  -  0.625 = 0.375

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions