Math, asked by tanyashok, 9 months ago

16. Find the 31st term of an A.P. whose 10th
term is 38 and 16th term is 74.

Answers

Answered by Anonymous
16

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

An A.P. whose 10th term is 38 and 16th term is 74.

\bf{\red{\underline{\bf{To\:find\::}}}}

The 31th term.

\bf{\red{\underline{\bf{Explanation\::}}}}

We know that formula of an A.P.

\boxed{\bf{a_{n}=a+(n-1)d}}}}

A/q

\longrightarrow\tt{a_{10}=38}\\\\\\\longrightarrow\tt{38=a+(10-1)d}\\\\\\\longrightarrow\tt{38=a+9d...........................(1)}

&

\longrightarrow\tt{a_{16}=74}\\\\\\\longrightarrow\tt{74=a+(16-1)d}\\\\\\\longrightarrow\tt{74=a+15d.........................(2)}

Subtracting equation (1) & (2),we get;

\longrightarrow\tt{a+9d-a-15d=38-74}\\\\\\\longrightarrow\tt{9d-15d=-36}\\\\\\\longrightarrow\tt{-6d=-36}\\\\\\\longrightarrow\tt{d=\cancel{\dfrac{-36}{-6} }}\\\\\\\longrightarrow\tt{\green{d=6}}

Putting the value of d in equation (1),we get;

\longrightarrow\tt{38=a+9(6)}\\\\\\\longrightarrow\tt{38=a+54}\\\\\\\longrightarrow\tt{a=38-54}\\\\\\\longrightarrow\tt{\green{a=-16}}

Now;

\longrightarrow\tt{a_{31}=a+(31-1)d}\\\\\\\longrightarrow\tt{a_{31}=-16+30\times 6}\\\\\\\longrightarrow\tt{a_{31}=-16+180}\\\\\\\longrightarrow\tt{\green{a_{31}=164}}

Thus;

The 31th term is 164 .

Answered by Anonymous
1

\boxed{\tt \dagger Given :- \dagger}

11th term of AP is 38 and,

16th term of AP is 73.

\boxed{ \tt \dagger To find :- \dagger}

The 31st term of AP = ?

\boxed{ \tt \dagger Solution :- \dagger}

Let first term of AP be a

Let first term of AP be aand common difference be d

Let first term of AP be aand common difference be dNow,

\tt \red{a_{11}=38a}

\tt\longrightarrow \green{a+10d=38\:.............(i)}

And,

 \blue{\tt\:a_{16}=73a}

 \tt\longrightarrow\pink{a+15d=73\:.............(ii)}

From eq (i) and eq (ii),

a + 10d = 38 ‿︵‿︵│

⠀ ⠀ ⠀ ⠀⠀⠀ ⠀ ⠀ ⠀⠀⠀ ⠀ |Subtracting

\boxed{+}a \boxed{+} 15d = \boxed{+}73 ‿︵‿︵│

-⠀ -⠀ ⠀ -

━━━━━━━━━━━━━━

-5d = -35

 \purple{ \tt⤇ d = \dfrac{-35}{-5} }

 \orange{ \tt⤇ d = 7}

Now,

Substitute the value of d in equation (i),

 \tt a + 10d = 38 \\ \tt⤇ a + 10 × 7 = 38 \\ \tt⤇ a + 70 = 38 \\ \tt⤇ a = 38 - 70 \\ \tt⤇ a = -32

Then,

 \gray{\tt\:a_{31}=a+30da }

\tt\longrightarrow\:a_{31}=-32+30\times{7} \\ \tt\longrightarrow\:a_{31}=-32+210 \\ \tt\longrightarrow\:a_{31}=178

Hence, the 31st term of an AP was \boxed{\sf\pink{178.}}

Similar questions