Math, asked by rajamanirajamani2346, 6 hours ago

16. Find the domain of under root 9 - xsquare​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: \sqrt{9 -  {x}^{2} }

Now,

Domain of a function f(x) is defined as set of those real values of x for which function is well defined.

So, using this definition,

\rm :\longmapsto\: \sqrt{9 -  {x}^{2} }  \: is \: defined \: when \:

\rm :\longmapsto\:9 -  {x}^{2} \geqslant 0

\rm :\longmapsto\: - ({x}^{2} - 9) \geqslant 0

\rm :\longmapsto\: {x}^{2} - 9 \leqslant 0

\rm :\longmapsto\: {x}^{2} -  {3}^{2}  \leqslant 0

\rm :\longmapsto\:(x - 3)(x + 3) \leqslant 0

\rm\implies \: - 3 \leqslant x \leqslant 3

\bf\implies \:x \:  \in \: [ - 3, \: 3]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn to More

If a < b then

\boxed{\tt{ (x - a)(x - b) &lt; 0 \:  \: \rm\implies \:a &lt; x &lt; b \: }}

\boxed{\tt{ (x - a)(x - b)  \leqslant  0 \:  \: \rm\implies \:a  \leqslant  x  \leqslant  b \: }}

\boxed{\tt{ (x - a)(x - b) &gt; 0 \:  \: \rm\implies \:x &lt; a \:  \: or \:  \: x &gt; b \: }}

\boxed{\tt{ (x - a)(x - b)  \geqslant  0 \:  \: \rm\implies \:x  \leqslant  a \:  \: or \:  \: x  \geqslant  b \: }}

Answered by diwanamrmznu
11

★find:-

 \red{DOMAIN \:  \:  \:  OF} \\  \\  \\  \implies \:  \star\pink{ \sqrt{9 - x {}^{2} } } \\

solution

 \underline{DOMAIN}

  • x all posible real number value when defined by function f(x)

  •  \implies \sqrt{9 - x {}^{2} }  \\

  • we know that root pogitive because x difined real value root negative not real value

it means

 \implies \:  \sqrt{9 - x {}^{2} }  \geqslant 0 \\

do square both sides

 \implies \:  (\sqrt{9 - x {}^{2} }) {}^{2}  \geqslant  \sqrt{0} \\  \\  \\   \implies \: 9 - x {}^{2}  \geqslant0

transposition

 \implies x {}^{2}  - 9 \leqslant 0

can we be written as

 \implies \: x {}^{2}  - 3 {}^{2}  \leqslant 0

we know that

 \implies \star \pink{ a {}^{2} - b {}^{2}  = ( a+b )(a - b)}  \\

 \implies \: (x - 3)(x + 3) \leqslant 0 \\

domain

 \star \red{ - 3 \leqslant x \leqslant 3} \\

,

  \implies \red {x \in \:[ - 3 \: ,3]}

=======================================

I hope it helps you

Similar questions