Math, asked by gunjan1717, 1 year ago

16. Find the value of p and q, if (x + 3) and (x - 4) are
factors of x^3-px^2-qx+24

Answers

Answered by pinky2211
8

Hey mate....

Here is your answer...

Attachments:

pinky2211: I hope this helped you
pinky2211: if this helped you plz mark me as brainliest
gunjan1717: its 24 not 2
gunjan1717: but thanx to help me
pinky2211: which is 24?
pinky2211: oh ok
pinky2211: understood
pinky2211: I'm sorry
pinky2211: thanks for the brainliest
Answered by bharathparasad577
0

Answer:

Concept:

Polynomials and Factorization of polynomials.

Step-by-step explanation:

Given:

\ $f(x)=x^{3}+a x^{2}-b x+24

Find:

Values of p and q

Solution:

Let us assume

$x+3=0$\\Then, $x=-3$\\$Now, substitute \ the \ value \ of \ $x$ \ in \ $\mathrm{f}(\mathrm{x})$$$\begin{aligned}&f(-3)=(-3)^{3}+a(-3)^{2}-b(-3)+24 \\&=-27+9 a+3 b+24 \\&=9 a+3 b-3\end{aligned}$$\\Dividing \ all \ terms \ by \ 3 \ we \ get,$$=3 a+b-1$$\\From \ the \ question, \\$(x+3)$  \ is \ a \ factor \ of \ $x^{3}+a x^{2}-b x+24$.\\Therefore, remainder is 0 .$$\begin{aligned}&f(x)=0 \\&3 a+b-1=0 \\&3 a+b=1 \ldots \text { [equation (i)] }\end{aligned}$$

Now, \\assume \ $x-4=0$\\Then,\\ $x=4$\\Given, $f(x)=x^{3}+a x^{2}-b x+24$\\Now, substitute the value of $x$ in $\mathrm{f}(\mathrm{x})$,$$\begin{aligned}&f(4)=43+a(4)^{2}-b(4)+24 \\&=64+16 a-4 b+24 \\&=88+16 a-4 b\end{aligned}$$Dividing all terms by 4 we get,$$=22+4 a-b$$$$\begin{aligned}&\mathrm{f}(\mathrm{x})=0 \\&22+4 \mathrm{a}-\mathrm{b}=0 \\&4 \mathrm{a}-\mathrm{b}=-22 \ldots \text { [equation (ii)] }\end{aligned}$$

Now, add the two equations (i) and (ii)

$$\begin{aligned}&(3 a+b)+(4 a-b)=1-22 \\&3 a+b+4 a-b=-21 \\&7 a=-21 \\&a=-21 / 7 \\&a=-3\end{aligned}$$Consider \ the \ equation (i) to \ find \ out 'b'.$$\begin{aligned}&3 a+b=1 \\&3(-3)+b=1 \\&-9+b=1 \\&b=1+9 \\&b=10\end{aligned}$$Therefore, value \ of $a=-3$ and $b=10$.\\Then, \ by \ substituting \ the \ value \ of \ a \ and \ $b\\ f(x)=x^{3}-3 x^{2}-10 x+24$

$$\begin{aligned}&(x+3)(x-4) \\&=x(x-4)+3(x-4) \\&=x 2-4 x+3 x-12 \\&=x^{2}-x-12\end{aligned}$$Dividing $f(x)$ by $x^{2}-x-12$ we get,\\Therefore, $x^{3}-3 x 2-10 x+24=(x 2-x-12)(x-2)$$$=(x+3)(x-4)(x-2)$$

#SPJ2

Similar questions