Math, asked by arifalishba733, 2 months ago


16. Following are the radius and height of cylinders,
(a)
radius 3.1 cm
height 5.16 cm
b)
radius 5.4 cm
height 3.28 cm
(C) diameter 8 cm
height 6.5 cm
Find:
(i) The area of the circular base
(ii) The total surface area
(iii) The total circular surface area
(iv) The volume of the cylinder
(v) The total curved surface area​

Answers

Answered by richapariya121pe22ey
0

Step-by-step explanation:

  • Area of circular base = πr²
  • Total surface area of cylinder = 2πr² + 2πrh
  • Total circular surface area = 2πrh
  • Volume of cylinder = πr²h

These are formulas.

You just need to substitute the values and calculate.

Answered by ItzCutePrince1946
2

\sf\small\underline\green{Given:-}

\sf{\implies Radius\:_{(cylinder)}=3.1cm}

\sf{\implies Height\:_{(cylinder)}=5.16cm}

\sf\small\underline\green{To\: Find:-}

\sf\small\underline\green{(i)Area\:_{(circular\:base)}}

\tt{\implies \pi\:r^2}

\tt{\implies \dfrac{22}{7}\times\:(3.1)^2}

\tt{\implies \dfrac{22*3.1*3.1}{7}}

\tt{\implies \dfrac{242.42}{7}}

\tt{\implies 30.20\:cm^2}

\sf\small\underline\green{(ii)Area\:_{(total\:surface)}}

\tt{\implies 2\pi\:r\:h+2\pi\:r^2}

\tt{\implies 2\pi\:r(h+r)}

\tt{\implies 2*\pi*3.1(5.16+3.1)}

\tt{\implies 6.2\pi*8.26}

\tt{\implies \dfrac{6.2*22*8.26}{7}}

\tt{\implies 160.952\:cm^2}

\sf\small\underline\green{(iii)Area\:_{(total\:circular\:base)}}

\tt{\implies 2\pi\:r^2}

\tt{\implies 2*\dfrac{22}{7}*(3.1)^2}

\tt{\implies \dfrac{2*22*3.1*3.1}{7}}

\tt{\implies \dfrac{422.84}{7}}

\tt{\implies 60.40\:cm^2}

\sf\small\underline\green{(iv) Volume\:_{(Cylinder)}:-}

\tt{\implies \pi\:r^2\:h}

\tt{\implies \dfrac{22}{7}*(3.1)^2*5.16}

\tt{\implies \dfrac{22*3.1*3.1*5.16}{7}}

\tt{\implies \dfrac{1090.92}{7}}

\tt{\implies 155.84\:cm^3}

\sf\small\underline\green{(v) Area\:_{(C.S.A\:Cylinder)}:-}

\tt{\implies 2\pi\:r\:h}

\tt{\implies 2*\dfrac{22}{7}*3.1*5.16}

\tt{\implies \dfrac{2*22*3.1*5.16}{7}}

\tt{\implies \dfrac{703.824}{7}}

\tt{\implies 100.54\:cm^2}

\sf\small\underline\green{To\: Find:-}

\sf\small\underline\red{Calculation\:for\:(b):-}

\sf{Radius=5.4cm}

\sf{Height=3.28cm}

\sf\small\underline\green{(i)Area\:_{(circular\:base)}}

\tt{\implies \pi\:r^2}

\tt{\implies \dfrac{22}{7}\times\:(3.28)^2}

\tt{\implies \dfrac{22*3.28*3.28}{7}}

\tt{\implies \dfrac{236.68}{7}}

\tt{\implies 33.81\:cm^2}

\sf\small\underline\green{(ii)Area\:_{(total\:surface)}}

\tt{\implies 2\pi\:r\:h+2\pi\:r^2}

\tt{\implies 2\pi\:r(h+r)}

\tt{\implies 2*\pi*3.28(5.4+3.28)}

\tt{\implies 6.56\pi*8.68}

\tt{\implies \dfrac{6.56*22*8.68}{7}}

\tt{\implies 178.95\:cm^2}

\sf\small\underline\green{(iii)Area\:_{(total\:circular\:base)}}

\tt{\implies 2\pi\:r^2}

\tt{\implies 2*\dfrac{22}{7}*(3.1)^2}

\tt{\implies \dfrac{2*22*3.28*3.28}{7}}

\tt{\implies \dfrac{473.36}{7}}

\tt{\implies 67.62\:cm^2}

\sf\small\underline\green{(iv) Volume\:_{(Cylinder)}:-}

\tt{\implies \pi\:r^2\:h}

\tt{\implies \dfrac{22}{7}*(3.28)^2*5.4}

\tt{\implies \dfrac{22*3.28*3.28*5.4}{7}}

\tt{\implies \dfrac{1278.09}{7}}

\tt{\implies 182.58\:cm^3}

\sf\small\underline\green{(v) Area\:_{(C.S.A\:Cylinder)}:-}

\tt{\implies 2\pi\:r\:h}

\tt{\implies 2*\dfrac{22}{7}*3.28*5.4}

\tt{\implies \dfrac{2*22*3.28*5.4}{7}}

\tt{\implies \dfrac{779.32}{7}}

\tt{\implies 111.33\:cm^2}

Similar questions