Physics, asked by amjadkhan78, 9 months ago

16. For a body travelling with uniform accela
ration, its final velocity is v=
 \sqrt{180 - 7x}

where x is the distance travelled by the bo
Then the acceleration is
2) -3.5 m/s2
3) -7 m/s2
4) 180 m/s2
1) -8 m/s2
TE 1


Answers

Answered by Anonymous
40

Answer:

 \boxed{\mathfrak{(2) \ -3.5 \ m/s^2}}

Given:

Velocity (v) w.r.t distance travelled (x):

 \sf v =  \sqrt{180 - 7x}

To Find:

Acceleration (a)

Explanation:

Rate of change of velocity w.r.t time is equal to acceleration:

 \sf \implies a =  \frac{dv}{dt}  \\  \\  \sf \implies a = \frac{dv}{dt}  \times  \frac{dx}{dx}  \\  \\  \sf \implies a = \frac{dx}{dt}  \times  \frac{dv}{dx}  \\  \\  \sf  \frac{dx}{dt} = v :   \\  \sf \implies a =v \frac{dv}{dx}  \\ \\   \sf v =  \sqrt{180 - 7x}  :  \\   \sf \implies a = (\sqrt{180 - 7x} )  \times \frac{d( \sqrt{180 - 7x} )}{dx}  \\  \\  \sf \implies a =  \cancel{\sqrt{180 - 7x}}  \times  \frac{ - 7}{2 \cancel{ \sqrt{180 - 7x} }}  \\  \\  \sf \implies a =  - \frac{7}{2}  \\  \\  \sf \implies a = - 3.5 \: m/s^2

 \therefore

Acceleration (a) = -3.5 m/s²

Answered by xesta34
12

Answer:

a = vdv/dx

v = √(180 - 7x)

a = √(180 - 7x) × d√(180 - 7x)/dx

a = √(180 - 7x) × -7/2√(180 - 7x)

a = -7/2

a = -3.5 m/s²

Similar questions