16. (i) 4 cos2 x – 4 sin x – 1 = 0 find general solution
Answers
Answered by
0
Answer:
4cos²x - 4sinx - 1 = 0
=> 4(1-sin²x) - 4sinx - 1 = 0 =>
4 - 4sin²x - 4sinx - 1 = 0 =>
4sin²x - 4sinx + 3 = 0 =>
4sin²x + 4sinx - 3 = 0 =>
4sin²x + 6sinx - 2sinx - 3 = 0 =>
2sinx(2sinx+3) - 1(2sinx+3) = 0 =>
(2sinx-1)(2sinx+3) = 0 =>
(2sinx-1) = 0 or (2sinx+3) = 0 =>
sinx = 1/2 Or sinx = -3/2 =>
sinx = sin30° --sinx cannot be equal to -3/2 because value of sin lies between -1 and 1
So x = 30°
Step-by-step explanation:
mark me brainliest
Similar questions
Math,
3 months ago
Physics,
3 months ago
English,
3 months ago
Computer Science,
6 months ago
Chemistry,
10 months ago