16. If A and B are acute angles such that tan A=1/3
tanB=1/2 and
tan (A+B)=tanA+tanB/1-tanATanB
show that A+B=45°.
Answers
Answered by
1
Answer:
Here, tan A = 1/3, tan B = 1/2
Also,
tan( A +B) = \frac{tan A+ tanB}{1- tanA tanB}tan(A+B)=
1−tanAtanB
tanA+tanB
\implies tan(A+B)=\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}\times \frac{1}{2}}⟹tan(A+B)=
1−
3
1
×
2
1
3
1
+
2
1
\implies tan(A+B) =\frac{\frac{2+3}{6}}{\frac{6-1}{6}}⟹tan(A+B)=
6
6−1
6
2+3
\implies tan(A+B) = \frac{\frac{5}{6}}{\frac{5}{6}}⟹tan(A+B)=
6
5
6
5
\implies tan(A+B) = 1⟹tan(A+B)=1
\implies (A+B) = tan^{-1} 1⟹(A+B)=tan
−1
1
\implies A + B = 45^{\circ}⟹A+B=45
∘
( Since, tan^{-1} 1 = 45^{\circ}tan
−1
1=45
∘
)
Similar questions