16. If cos 9A = sin A and 9A < 90°, then find the value of tan 5A.
Answers
Answered by
2
Answer:
Here it is
Step-by-step explanation:
The value of \tan 5Atan5A is "1".
Step-by-step explanation:
We have,
\cos 9A=\sin Acos9A=sinA
To find, the value of \tan 5A=?tan5A=?
\cos 9A=\sin (90-A)cos9A=sin(90−A)
[ ∴\cos A= \sin (90-A)cosA=sin(90−A)
⇒ 9A = 90° - A
⇒ 10 A = 90°
⇒ A = \dfrac{90}{10}
10
90
= 9°
∴ 5A = 5 × 9° = 45°
The value of \tan 5Atan5A = \tan 45tan45 = 1
[ ∴\tan 45= 1tan45=1
Hence, the value of \tan 5Atan5A is "1
Attachments:
Similar questions
English,
1 month ago
Math,
1 month ago
Math,
2 months ago
Social Sciences,
10 months ago
Math,
10 months ago