16.
If sin square A = 0, then find the value of cos A.
Answers
Answered by
18
Answer:-
Given:-
- Sin²A = 1
To find:-
- The value of cos A
Solution:-
Here sin² = 0
Sin²A + cos²A = 1
( 0 )² + cos²A = 1 (Here, the value of sin²A = 0)
cos²A = 1 - 0
cos²A = 1
cos A = √1
cos A = 1
Therefore, The value of cos A = 1
Answered by
4
Answer:
The value of Cos A is +/-1
Step-by-step explanation:
Given that
Sin²A=0
Sin²A=0Cos²A=?
We know that,
Sin²A+Cos²A=1
Putting the values of Sin²A=0, we get
0+Cos²A=1
0+Cos²A=1Cos²A= 1
0+Cos²A=1Cos²A= 1CosA=√1
0+Cos²A=1Cos²A= 1CosA=√1CosA=+/-1
Conclusion:
If sin² A = 0, then the value of Cos A is +/-1.
Similar questions