16. If the sum of first m terms of an A.P.is
same as the sum of its first n termss
show that the sum of its first (m+n)terms
is zero
Answers
Answered by
1
Answer:
Sm=m/2[2a+(m-1)d]
Sn=n/2[2a+(n-1)d]
Sm=Sn(given)
-›m/2[2a+(m-1)d]=n/2[2a+(n-1)d]
Multiply 2 on both the sides
-›2×m/2[2a+(m-1)d]=2×n/2[2a+(n-1)d]
-›m[2a+(m-1)d]=n[2a+(n-1)d]
-›2am+(m-1)dm=2an+(n-1)dn
-›2am+dm²-dm=2an+dn²-dn
-›2am-2an=dn²-dm²-dn+dm
-›2a(m-n)=d(n²-m²-n+m)
-›2a(m-n)=d[(n²-m²)-(n-m)]
-›2a(m-n)=(-d)[(m²-n²)-(m-n)]
-›2a(m-n)=(-d)[(m-n)(m+n)-(m-n)]
-›2a(m-n)=(-d)(m-n)(m+n-1)
-›2a=(-d)(m+n-1)
-›2a=(-dm)-dn+d
-›2a+dm+dn-d=0
-›2a+(m+n-1)d=0
Sn=n/2[2a+(n-1)d]
S(m+n)=(m+n)/2[2a+(m+n-1)d]
S(m+n)=(m+n)/2×0
S(m+n)=0
Hence proved
Similar questions
English,
2 months ago
English,
2 months ago
English,
6 months ago
Accountancy,
11 months ago
English,
11 months ago