Math, asked by samarthchakule74, 4 months ago

16) If x2+y2=7xythen show that2log(x+y divide by 3)=logx +logy​

Answers

Answered by Arceus02
1

Given that,

 {x}^{2}  +  {y}^{2}  = 7xy

Adding 2xy to both sides,

 \longrightarrow {x}^{2}  +  {y}^{2}  + 2xy = 7xy + 2xy

 \longrightarrow  {(x + y)}^{2}  = 9xy

 \longrightarrow  {(x + y)}^{2}  =  {(3 \sqrt{xy})}^{2}

Taking square root on both sides,

 \longrightarrow   \sqrt{{(x + y)}^{2}}  =   \sqrt{{(3 \sqrt{xy})}^{2}}

Considering only positive values,

 \longrightarrow  x + y  =  3 \sqrt{xy}

 \longrightarrow  \sqrt{xy} =  \dfrac{x + y}{3}  \quad \quad \dots(1)

\\

Now, coming to the required proof,

2 \log \bigg( \dfrac{x + y}{3}  \bigg) =  \log(x) +  \log(y)

Putting the value of (x + y)/3 from (1) in L.H.S.,

 \longrightarrow 2 \log ( \sqrt{xy} ) =  \log(x) +  \log(y)

 \longrightarrow 2 \log  \{({xy})^{1/2}  \} =  \log(x) +  \log(y)

 \red{ \bigstar} \boxed{ \log(a) {}^{b}  = b \log(a) }

 \longrightarrow 2 \times  \dfrac{1}{2}  \log  (xy) =  \log(x) +  \log(y)

 \longrightarrow \log  (xy) =  \log(x) +  \log(y)

 \green{ \bigstar} \boxed{ \log(ab) =  \log(a) +  \log(b)}

 \longrightarrow \log  (xy) = \log(xy)

Hence proved!

Similar questions
Math, 10 months ago