Math, asked by santhimeena98, 10 months ago

16. Integrating factor of the differential equation
cos xdy/dx+ y sinx=1 is
(1) cosx
2) tanx
(3) secx
(4) sinx​

Answers

Answered by Anonymous
2

Answer:

 \red{Question} \implies \\ integreating \: factor \: of \: the \: differential \: equation \\  \\ cos  \:  x \frac{dy}{dx}  + y \: sin \: x = 1 \: \:  \\  \\       \red{solution}\implies \\ \\ \green{step \: by \: step \: solution} \\  \implies \: cos \: x \frac{dy}{dx}  + y \: sin \: x = 1 \\  \\ divided \: by \: cos \: x \: on \: both \: sides \\  \\  \implies \:   \red{\frac{dy}{dx}  + y \frac{sin \: x}{cos \: x}  =  \frac{1}{cos \: x} } \\  \\  \implies \:  \frac{dy}{dx}  + y \: tan \: x = sec \: x \:  \\ compare \: this \: equation \: by \\  \\   \implies \pink{\frac{dy}{dx} + yp = q } \\  \\ we \: get \:  \\ p = tan \: x \:   \:  \: \: and \:  \: \:  \:  q = sec \: x \\  \\ now \: we \: know \: that \:  \\  \\  \green{integreating \: factor (i.f)=  {e}^{ \int\: p.dx}}  \\  \\  \implies \: i.f =  {e}^{ \int \: tan \: x.dx}  \\  \\ \: we \: know \: that \\  \\  \int \: tan \: x \: .dx =  - log \: cos \: x \:  \\  \\ therefore \:  \\  \\  \implies \: i.f =  {e}^{ - log \: cos \: x + c}  \\  \\  \implies \: i.f =  \frac{1}{cos \: x}  \\  \\  \implies \: \red{\boxed{i.f = sec \: x}} \:  \\  \\ hope \: it \: helps \: u

Similar questions