Physics, asked by ananyatw66391, 11 months ago

16 micro columb and 4 micro charges are separated by 24 cm where should be the third charge 5 nanocoulomb it will be placed so that it will be in equilibrium

Answers

Answered by nirman95
24

Answer:

Given:

16 and 4 micro C charge are separated by 24 cm.

To find:

Position of 5 nano C so as to remain in equilibrium.

Concept:

For the charge to remain in equilibrium , it has to be placed in between the 16 and 4 micro C charges. And also it has to be placed a little nearer to the 4 micro C charge.

Calculation:

Let the equilibrium point be x cm from 16 micro C. Hence the other distance will be (24 - x)

F1 = F2

 \implies \:  \frac{1}{4\pi \epsilon}  \frac{(16 \times  {10}^{ - 6}) \times (5 \times  {10}^{ - 9} )}{ {x}^{2} }  = \frac{1}{4\pi \epsilon}  \frac{(4 \times  {10}^{ - 6}) \times (5 \times  {10}^{ - 9} )}{ {(24 - x)}^{2} }

Cutting all the necessary terms :

 \implies \:  \dfrac{16 \times 5}{ {x}^{2} }  =  \dfrac{4 \times 5}{ {(24 - x)}^{2} }

 \implies \:  \dfrac{16}{ {x}^{2} }  =  \dfrac{4}{ {(24 - x)}^{2} }

 \implies \:  \dfrac{4}{x}  =  \dfrac{2}{(24 - x)}

 \implies \: 96 - 4x = 2x

 \implies \: 6x = 96

 \implies \: x = 16 \: cm

So the charge is located 16 cm from 16 micro C charge and 8 cm from 4 micro C.

Answered by Anonymous
38

 \underline{ \boxed{ \bold{ \purple{ \huge{Answer\::-}}}}} \\  \\  \star \rm \:  \red{Given} \\  \\  \mapsto \rm \: 16 \mu{C} \: and  \: 4 \mu{C} \: charges \: are \: separated \\  \rm \: by \: 24cm...another \: charge \: of \: 5nC \: is \: placed \\  \rm \: between \: two \: static \: charges... \\  \\  \star \rm \:  \red{To \: Find} \\  \\  \mapsto \rm \: where \: should \: be \: third \: charge  \:  placed  \\  \rm \: so \: that \: whole \: system \: remains \: into \: eq... \\  \\  \star \rm \:  \red{Concept} \\  \\  \mapsto \rm \: here \: all \: charges \: are \: positive \: in \: nature \\  \rm \: so \: we \: should \: place \: third \: charge \: at \: between  \\  \rm \:  two \: charges \: for \: condition \: of \: eq... \\  \\  \star \rm \:  \red{Assumption} \\  \\  \mapsto \rm \: let \: distance \: between \: 16 \mu{C} \: and \: 5nC\: charge \\  \rm \: is \: x \: cm \: and \: value \: of \: pushing \: force \: is \: F_1... \\  \\  \mapsto \rm \: so\: distance \: between \: 4 \mu{C} \: and \: 5nC \: charge \\  \rm \: will \: be \: (24 - x) \: cm \: and \: value \: of \: pushing \\  \rm \: type \: force \: will \: be \: F_2 \\  \\  \star \rm \:  \red{ Formula} \\   \\  \mapsto \rm \: for \: condition \: of \: equilibrium... \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \underline{ \boxed{ \purple{ \rm{ \huge{\bold{F_1 = F_2}}}}}}\\  \\   \star \rm \:  \red{Calculation} \\  \\  \leadsto \rm \: F_1 = F_2 \\  \\  \leadsto \rm \:  \frac{k(16 \mu{C})(5nC)}{ {x}^{2} }  =  \frac{k(5nC)(4 \mu{C})}{ {(24 - x)}^{2} }  \\  \\  \dagger \rm \: cutting \: down \: same \: values... \:  \dagger \\  \\  \leadsto \rm \:  \frac{80}{ {x}^{2} }  =  \frac{20}{ {(24 - x)}^{2} }  \\  \\  \leadsto \rm \: 4 =  \frac{ {x}^{2} }{ {(24 - x)}^{2} }  \\  \\  \leadsto \rm \: x = 2(24 - x) \\  \\  \leadsto \rm \: 3x = 48 \\  \\  \leadsto \rm \:  \blue{x = 16 \: cm} \\  \\  \dagger \rm \:  \: for \: eq. \: position \: third \: charge \: should \: be \:  \orange{16cm}  \\  \rm \:  apart \: from \:  \orange{16 \mu{C}} \: charge \: and \:  \pink{8 \: cm} \: apart \: from \\  \rm \:  \pink{4 \mu{C} }\: charge... \:  \:  \dagger \\  \\  \star \rm \:  \red{Diagram} \\  \\  \mapsto \rm \: see \: the \: attached \: image...

Attachments:
Similar questions