Science, asked by drishya49, 1 month ago

16.Read the following and answer the questions given below: In prokaryotes, DNA is circular and present in the cytoplasm but in eukaryotes, DNA is linear and mainly confined to the nucleus. DNA or deoxyribonucleic acid is a long polymer of nucleotides. In 1953, the first correct double helical structure of DNA was worked out by Watson and Crick. Based on the X-ray diffraction data produced by Maurice Wilkins and Rosalind Franklin. It is composed of three components, i.e., A phosphate group, a deoxyribose sugar and a nitrogenous base. Different forms of DNA are B-DNA, Z-DNA, A-DNA, C-DNA and D-DNA.
1 point
(i) Name the linkage present between the nitrogen base and pentose sugar in DNA.
(a) Phosphodiester bond
(b) Glycosidic bond
(c) Hydrogen bond
(d) Peptide bond​

Answers

Answered by demsgaurav8b25
0

Answer:

b

Explanation:

yshshauisosudgdgdhdjdkssosjsjsjjsjsjsjsjxbcb

Answered by harshit5645
1

Answer:

The most important function of DNA is to carry genes, the information that specifies all the proteins that make up an organism—including information about when, in what types of cells, and in what quantity each protein is to be made. The genomes of eucaryotes are divided up into chromosomes, and in this section we see how genes are typically arranged on each chromosome. In addition, we describe the specialized DNA sequences that allow a chromosome to be accurately duplicated and passed on from one generation to the next.

We also confront the serious challenge of DNA packaging. Each human cell contains approximately 2 meters of DNA if stretched end-to-end; yet the nucleus of a human cell, which contains the DNA, is only about 6 μm in diameter. This is geometrically equivalent to packing 40 km (24 miles) of extremely fine thread into a tennis ball! The complex task of packaging DNA is accomplished by specialized proteins that bind to and fold the DNA, generating a series of coils and loops that provide increasingly higher levels of organization, preventing the DNA from becoming an unmanageable tangle. Amazingly, although the DNA is very tightly folded, it is compacted in a way that allows it to easily become available to the many enzymes in the cell that replicate it, repair it, and use its genes to produce proteins.

Go to:

Eucaryotic DNA Is Packaged into a Set of Chromosomes

In eucaryotes, the DNA in the nucleus is divided between a set of different chromosomes. For example, the human genome—approximately 3.2 × 109 nucleotides—is distributed over 24 different chromosomes. Each chromosome consists of a single, enormously long linear DNA molecule associated with proteins that fold and pack the fine DNA thread into a more compact structure. The complex of DNA and protein is called chromatin (from the Greek chroma, “color,” because of its staining properties). In addition to the proteins involved in packaging the DNA, chromosomes are also associated with many proteins required for the processes of gene expression, DNA replication, and DNA repair.

Bacteria carry their genes on a single DNA molecule, which is usually circular (see Figure 1-30). This DNA is associated with proteins that package and condense the DNA, but they are different from the proteins that perform these functions in eucaryotes. Although often called the bacterial “chromosome,” it does not have the same structure as eucaryotic chromosomes, and less is known about how the bacterial DNA is packaged. Even less is known about how DNA is compacted in archaea. Therefore, our discussion of chromosome structure will focus almost entirely on eucaryotic chromosomes.

With the exception of the germ cells, and a few highly specialized cell types that cannot multiply and lack DNA altogether (for example, red blood cells), each human cell contains two copies of each chromosome, one inherited from the mother and one from the father. The maternal and paternal chromosomes of a pair are called homologous chromosomes (homologs). The only nonhomologous chromosome pairs are the sex chromosomes in males, where a Y chromosome is inherited from the father and an X chromosome from the mother. Thus, each human cell contains a total of 46 chromosomes—22 pairs common to both males and females, plus two so-called sex chromosomes (X and Y in males, two Xs in females). DNA hybridization (described in detail in Chapter 8) can be used to distinguish these human chromosomes by “painting” each one a different color (Figure 4-10). Chromosome painting is typically done at the stage in the cell cycle when chromosomes are especially compacted an

Similar questions