16. Show that the points O(0, 0, 0), A(2,–3, 3), B(–2, 3, –3) are collinear. Find the ratio in which each point divides the segment joining the other two.
Answers
Answered by
0
Answer:
Let's find area of △OAB which is given by,
Δ=
2
1
∣OA∣∣OB∣sinθ
where θ is angle between
OA
and
OB
Now, cosθ=
∣
∣
∣
∣
OA
∣
∣
∣
∣
∣
∣
∣
∣
OB
∣
∣
∣
∣
OA
.
OA
=
4+9+9
4+9+9
−4−9−9
=
22
−22
⇒ cosθ=−1⇒ θ=180
o
⇒ Δ=0 as sin180=0
⇒ O,A,B are collinear
Now, let A divides
OB
in k:1
⇒ 2=
k+1
−2k+0
⇒ 2k+2=−2k⇒ 4k=−2⇒ k=−
2
1
⇒ A divides
OB
in 1:2 externally
Now for B
⇒ −2=
k+1
2k+0
⇒ −2k−2=2k⇒ 4k=−2
⇒ k=−
2
1
⇒ B divides
OA
in 1:2 externally for O
⇒ O=
k+1
−2k+2
⇒ 2k=2⇒ k=1
⇒ O divides
AB
in 1:1 internally
Step-by-step explanation:
Similar questions