16. Simplity (√5-√2) (√15+√2)
Answers
Step-by-step explanation:
Question :- (7√3)/(√10 + √3) - (2√5)/(√6 + √5) - (3√2)/(√15 + 3√2) simplify ?
Solution :-
First part of Question is :-
(7√3)/(√10 + √3)
second Part :-
(2√5)/(√6 + √5)
Third Part :-
(3√2)/(√15 + 3√2)
Solving Each part one by one Now :-
1) (7√3)/(√10 + √3)
→ (7√3)/(√10 + √3)
Rationalising the denominator we get,
→ {(7√3)/(√10 + √3)} * {(√10 - √3) / (√10 - √3)}
using (a + b)(a - b) = a² - b² in Denominator now,
→ {7√3*(√10 - √3)} / (10 - 3)
→ {7√3*(√10 - √3)} / 7
→ √3(√10 - √3)
→ (√30 - 3)
_______________
2) (2√5)/(√6 + √5)
→ (2√5)/(√6 + √5)
Rationalising the denominator we get,
→ {(2√5)/(√6 + √5)} * {(√6 - √5) / (√6 - √5)}
using (a + b)(a - b) = a² - b² in Denominator now,
→ {2√5 * (√6 - √5)} / (6 - 5)
→ 2√5 * (√6 - √5)
→ 2√30 - 2*5
→ (2√30 - 10).
_______________
3) (3√2)/(√15 + 3√2)
→ (3√2)/(√15 + 3√2)
Rationalising the denominator we get,
→ {(3√2)/(√15 + 3√2)} * {(√15 - 3√2) / (√15 - 3√2)}
using (a + b)(a - b) = a² - b² in Denominator now,
→ {3√2 * (√15 - 3√2)} / (15 - 18)
→ {3√2 * (√15 - 3√2)} / (-3)
→ (-1) * √2 * (√15 - 3√2)
→ - √30 + 3*2
→ (6 - √30).
_______________
Therefore,
→ (7√3)/(√10 + √3) - (2√5)/(√6 + √5) - (3√2)/(√15 + 3√2)
→ (√30 - 3) - (2√30 - 10) - (6 - √30)
→ √30 - 2√30 + √30 - 3 + 10 - 6
→ 2√30 - 2√30 + 10 - 9
→ 10 - 9
→ 1. (Ans.)
Hence , Required Answer is 1.
Answer: