Physics, asked by nandini240403, 2 months ago


16. The area of cross-section and length of a wire are 0.5 mm- and 4.0 m respectively. How much work
will be done to increase its length by 1.0 mm? Young's modulus of elasticity of the material of the
wire is 2.0 x 10" N/m²
(UPB 2007) Ans. 1.25*10kipower-2jole​

Answers

Answered by Anonymous
4

GIVEN :-

  • Area of cross-section of wire (A) = 0.5mm²
  • Length of wire (L) = 4m
  • Increase in length (∆L) = 1mm
  • Young's modulus (Y) = 2 × 10¹¹ N/m²

 \\

TO FIND :-

  • Work done (W) for elongation.

 \\

TO KNOW :-

 \\   \bigstar\boxed{ \sf \: Y =  \dfrac{F \times L}{A  \times \Delta \: L} } \\  \\  \bigstar \boxed{ \sf \:W =  \dfrac{1}{2}   \times F \times  \Delta \: L} \\

Here ,

  • Y → Young's modulus
  • F → Force
  • L → Length
  • A → Area of cross section
  • ∆L → Length of Elongation
  • W → Work done

 \\

SOLUTION :-

We have ,

  • Y = 2 × 10¹¹ N/m²
  • A = 0.5mm² = 0.5 × 10-⁶m²
  • ∆L = 1mm = 1 × 10-³ m²
  • L = 4m
  • F = ?

 \\  \sf \: Y =  \dfrac{F \times L}{A \times  \Delta \: L} \\

Putting values we get,

 \\   \implies\sf \: 2 \times  {10}^{11}  =  \dfrac{F \times 4}{0.5 \times  {10}^{ - 6}  \times 1 \times  {10}^{ - 3} }  \\ \\   \\  \implies\sf \: 2 \times   {10}^{11}  =  \dfrac{4F}{0.5 \times  {10}^{ - 9} }  \\  \\  \\ \implies  \sf \: 2 \times  {10}^{11} \times 0.5 \times  {10}^{ - 9}   = 4F \\ \\   \\\implies  \sf \:  {10}^{2}  = 4F \\ \\ \\  \implies \sf \: 100 = 4F \\  \\  \\  \implies\sf \: F =  \dfrac{100}{4}  \\  \\  \\  \implies\boxed{ \sf \: F = 25N} \\  \\

__________________

Now , we have ,

  • F = 25N
  • ∆L = 1 × 10-³ m

 \\  \sf \: W =  \dfrac{1}{2}  \times F \times  \Delta \: L  \\

Putting values we get,

 \\  \sf \: W =  \dfrac{1}{2}  \times 25 \times 1 \times  {10}^{ - 3}  \\  \\  \\  \underline{\boxed{  \sf \: W = 12.5  \times  {10}^{ - 3} J}} \\  \\

Hence , Work done in elongation is 12.5 × 10-³ J.

Similar questions