Math, asked by ashishgeorge300, 9 months ago

16. The eccentricity of the conjugate hyperbola
of the hyperbola x^2- 3y^2=1 is
a. 2 b. 2'13 c. 4 d. 4/3​

Answers

Answered by BrainlyConqueror0901
12

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eccentricity=\sqrt{\frac{5}{3}}}}}\\

\green{\tt{\therefore{Eccentricity=\frac{2}{\sqrt{3}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{ \underline \bold{Given : }}\\  \tt:  \implies Eqn \: of \: hyperbola  =  {x}^{2}  - 3 {y}^{2}  = 1 \\  \\  \red{ \underline \bold{To \: Find: }} \\  \tt:  \implies Eccentricity = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Eqn \: of \: hyperbola =  {x}^{2}  - 3 {y}^{2}  = 1 \\  \\ \tt:  \implies Conjugate \: hyperbola =  {x}^{2}  - 3 {y}^{2}  =  - 1 \\  \\ \tt:  \implies  {x}^{2}  - 3 {y}^{2}  =  - 1 \\  \\ \tt:  \implies   \frac{ {x}^{2} }{1}  -  \frac{ {y}^{2} }{  \frac{1}{3}  }  =  - 1 \\  \\  \bold{Where : } \\  \tt:  \implies  {a}^{2}  = 1 \\  \\ \tt:  \implies  {b}^{2}  =  \frac{1}{3}  \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies  {a}^{2}  =  {b}^{2} ( {e}^{2}  - 1) \\  \\ \tt:  \implies 1 =  \frac{1}{3} ( {e}^{2}  - 1) \\  \\ \tt:  \implies  1 - \frac{1}{3} =  {e}^{2}  - 1 \\  \\ \tt:  \implies  \frac{2}{3}  =  {e}^{2}  - 1

\tt:  \implies  \frac{2}{3}  + 1  =  {e}^{2}  \\  \\ \tt:  \implies  \frac{5}{3}  =  {e}^{2}  \\  \\  \green{\tt:  \implies e =  \sqrt{ \frac{5}{3} } } \\  \\  \bold{Eccentricity \: of \: standard \: hyperbola} \\  \tt:  \implies  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1) \\  \\ \tt:  \implies  \frac{1}{3}  = 1( {e}^{2}  - 1) \\  \\ \tt:  \implies  \frac{1}{3} =  {e}^{2}   - 1 \\  \\ \tt:  \implies  \frac{1}{3}  + 1 =  {e}^{2}  \\  \\ \tt:  \implies  \frac{4}{3}  =  {e}^{2}  \\  \\ \tt:  \implies e =  \sqrt{ \frac{4}{3} }  \\  \\  \green{\tt:  \implies e =  \frac{2}{ \sqrt{3} } }

Answered by Saby123
18

 \tt{\huge{\orange{----------}}} B.Q

QUESTION :

16. The eccentricity of the conjugate hyperbola

16. The eccentricity of the conjugate hyperbolaof the hyperbola x^2- 3y^2=1 is ..........

a. 2

b. 2/13

c. 4

d. 4/3

SOLUTION :

First we will have to find the Equation of the conjugate Hyperbola.

Equation of Original Hyperbola :

X ^ 2 - 3 Y ^2 = 1

Equation of the conjugate Hyperbola can be found by multiplying the original Equation by ( - 1 )

Hence Equation Of Conjugate Hyperbola :

X ^ 2 - 3 Y ^2 = -1

Breaking this into Intercept Form :::

=> 3 can be written as : 1 / { 1 / 3 }

=> - 1 can be written as : 1 / { -1 }

Hence Equation of Conjugate Hyperbola In Intercept Form :

=> X ^ 2 / { -1 } + Y ^ 2 / { 1 / 3 } = 1

So, X Intercept A = -1

Y Intercept B = 1 / 3

for Standaard Hyperbola :

=> { A } ^ 2 = 1

=> { B } ^ 2 = { 1 / 3 }

Now we know that :

b^2 =a ^ 2 ( e ^2 - 1 )

=> { 1 / 3 } = e^2 - 1

=> e^2 = 1 +{ 1 / 3 } = 4 / 3

=>e = + { [ 2 ]/√ [ 3 ] } and - { [ 2 ] / [√ 3 ] }......[ A ]

similarly solving for conjugate Hyperbola,

e = + 5 / √ { 3 } and - 5 / √ { 3 }

N o N e O f T h E g I V e N O p T I O N s A r E c O R R e C T.

Similar questions