Math, asked by sunitadaudnagar86, 6 months ago


16. The present population of a city is 1,80,000.
If it increases at the rate of 8% per annum, its
population after 2 years will be
(a) 2,07,800
(b) 2,09,952
(c) 2,05,992
(d) 2,08,700​

Answers

Answered by RoyalKalakar
12

\huge{\underline{\boxed{\boxed{\red{\mathcal{QUESTION:}}}}}}

The present population of a city is 1,80,000.  If it increases at the rate of 8% per annum, its  population after 2 years will be

:

  1. 2,07,800
  2. 2,09,952
  3. 2,05,992
  4. 2,08,700

\huge{\underline{\boxed{\boxed{\red{\mathcal{SOLUTION:}}}}}}

\star{\bf{\underline{\blue{Given:}}}}

  • Present population of a city (P) = 1,80,000
  • Rate of increase (r) = 8%
  • Time (t) = 2 years

\star{\bf{\underline{\blue{To\;Find:}}}}

  • Population after 2 years.

\star{\bf{\underline{\blue{Formula\;used:}}}}

  • \sf{Population\;after\;2\;years = P\Bigg(1+\dfrac{r}{100}\Bigg)^{t}}

Now, put the values in the formula,

\implies{\sf{Population\;after\;2\;years = P\Bigg(1+\dfrac{r}{100}\Bigg)^{t}}} \\ \\ \\ \implies{\sf{Population\;after\;2\;years=1,80,000\Bigg(1+\dfrac{8}{100}\Bigg)^{2}}}\\ \\ \\ \implies{\sf{Population\;after\;2\;years=1,80,000\Bigg(\dfrac{108}{100}\Bigg)^{2}}}\\ \\ \\ \implies{\sf{Population\;after\;2\;years=1,80,000\Bigg(\dfrac{19440}{10000}\Bigg)}}\\ \\ \\ \implies{\sf{Population\;after\;2\;years=18 \times 19440}}\\ \\ \\ \implies{\sf{Population\;after\;2\;years=3,49,920}}

Hence, Population after 2 years = 3,49,920.

Similar questions