Math, asked by pravashmahato063, 4 months ago

16. The sum of the radius and height of a cylinder is 37 cm and the total surface area of
the cylinder is 1628 cm Find the height and the volume of the cylinder

Answers

Answered by sanugamulasunitha
1

Answer:

Given r+h=37 cm

Total surface area of the solid cylinder = 2πr(r+h)=1628cm

2

∴r=

2×22×37

1628×7

=7cm

∴ Height = (37-7) cn = 30 cm

and Circumference = 2πr=

7

22

×7=44cm

Volume of the cylinder = πr

2

h=

7

22

×7×7×30=4620cm

3

Answered by suraj5070
168

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt 16. \:  The \:  sum \:  of \:  the \:  radius  \: and \:  height  \: of \:  a  \: cylinder\\\tt is \:  37  \: cm \:  and  \: the \:  total \:  surface \:  area \:  of \:  the\\\tt cylinder \:  is  \: 1628  \:  {cm}^{2}  Find  \: the  \: height \:  and\\\tt the  \: volume \:  of \:  the \:  cylinder.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Sum\:of \:the \:radius \:and\:height (r+h) = 37\:cm
  •  \sf \bf Total\:surface \:area \:of \:cylinder (TSA) = 1628\:{cm}^{2}

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Height \:of\:the \:cylinder
  •  \sf \bf Volume \:of\:the \:cylinder

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

{\color {springgreen}\underline {\sf (i) Height \:of\:the \:cylinder}}

 {\boxed {\boxed {\boxed {\color {blue} {\sf \bf TSA=2 \pi r \Big(r+h\Big)}}}}}

  •  \sf TSA=total \:surface \:area \:of \:cylinder
  •  \sf r=radius \:of\:the \:cylinder
  •  \sf h=height \:of\:the \:cylinder

 {\overbrace {\underbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies 1628=2 \times \dfrac{22}{7} \times r \times 37

 \sf \bf \implies 1628=74 \times \dfrac{22}{7} \times r

 \sf \bf \implies 1628=\dfrac{1628}{7}\times r

 \sf \bf \implies r=1628 \times \dfrac{7}{1628}

 \sf \bf \implies r=\cancel{1628} \times \dfrac{7}{\cancel {1628}}

 \implies {\boxed {\boxed{\color {green} {\sf \bf r=7\:cm}}}}

-------------------------------------------------------

 \sf \bf \implies \Big(r+h\Big) =37 \longrightarrow \big(Given \big)

 {\overbrace {\underbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies 7+h=37

 \sf \bf \implies h=37-7

 \implies {\boxed {\boxed {\color {aqua} {\sf \bf h=30\:cm}}}}

 {\underbrace {\color {red} {\underline {\color {red} {\sf \therefore The\:height \:of\:the \:cylinder \:is\:30\:cm}}}}}

————————————————————————

 {\color {springgreen}\underline {\sf (i) Volume \:of\:the \:cylinder}}

 {\boxed {\boxed {\boxed {\color {blue} {\sf \bf V= \pi {r}^{2}h}}}}}

  •  \sf V=Volume \:of \:cylinder
  •  \sf r=radius \:of\:the \:cylinder
  •  \sf h=height \:of\:the \:cylinder

 {\overbrace {\underbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies V=\dfrac{22}{7} \times {\Big(7\Big)}^{2} \times 30

 \sf \bf \implies V=\dfrac{22}{7} \times 7 \times 7 \times 30

 \sf \bf \implies V=\dfrac{22}{\cancel {7}} \times \cancel {7} \times 7 \times 30

 \sf \bf \implies 22 \times 7 \times 30

 \implies {\boxed {\boxed {\color {aqua} {\sf \bf V=4620\:{cm}^{3}}}}}

 {\underbrace {\color {red} {\underline {\color {red} {\sf \therefore The\:volume \:of\:the \:cylinder \:is\:4620\:{cm}^{3}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \bf Lateral \:surface \:area \:of \:cylinder = 2 \pi r h

 \bf Total \:surface \:area \:of \:cylinder =2 \pi r \Big(r+h\Big)

 \bf Volume \:of\:cylinder =  \pi {r}^{2} h

Similar questions