Math, asked by smritiiii04, 7 months ago

(16-x ²) (x²+4) (x²+x+1)(x²-x-3) < = 0 so solve he inequality​

Answers

Answered by kkspawani
1

Answer:

gjkkllllllllllllmmmm

Answered by senboni123456
0

Step-by-step explanation:

We have,

(16 -  {x}^{2} )( {x}^{2}  + 4)( {x}^{2}  + x + 1)( {x}^{2}  - x - 3) \leqslant 0

Now, (x²+4) is always positive. Also, x²+x+1 is positive.

so,

(16 - x²)(x² - x - 3) must be less than 0

(16 -  {x}^{2} )( {x}^{2}  - x - 3) \leqslant 0

 =  &gt; ( {x}^{2}  - 16)( {x}^{2}  - x - 3) \geqslant 0

 =  &gt; (x + 4)(x - 4)(x -  \frac{1 +  \sqrt{13} }{2} )(x -  \frac{1 -  \sqrt{13} }{2} ) \geqslant 0

 =  &gt; x \:  \: belongs \:  \: to \: ( -  \infty  \:  \: to \:  \:  - 4] \:  \: union \:  \:  [ \frac{1 -  \sqrt{13} }{2} \:  \: to \:  \:  \frac{1 +  \sqrt{13} }{2}  ] \:  \: union \:  \: [4 \:  \: to \:  \:  \infty )

Similar questions