Math, asked by aannadkumar9900, 1 month ago

16(x+y)² - 25(x-3y)² find the answer​

Answers

Answered by moegut19
0

Answer:

-9x+241y

Step-by-step explanation:

-9x+241y is the correct answer.

please mark me brainliest

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:16 {(x + y)}^{2}  - 25 {(x - 3y)}^{2}

can be rewritten as

 \rm =  \: 4 \times 4 {(x + y)}^{2} - 5 \times 5 {(x - 3y)}^{2}

 \rm =  \:  {4}^{2} {(x + y)}^{2} -  {5}^{2} {(x - 3y)}^{2}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {x}^{m} \times  {y}^{n} \:  =  \:  {(xy)}^{n}  \: }}}

So, using this Law of radical, we get

 \rm =  \:  {[4(x + y)]}^{2} -  {[5(x - 3y)]}^{2}

 \rm =  \:  {(4x + 4y)}^{2} -  {(5x - 15y)}^{2}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y) \: }}}

So, using this identity, we get

 \rm =  \: (4x + 4y + 5x - 15y)(4x + 4y - 5x + 15y)

 \rm =  \: (9x  - 11y)(19y - x)

Hence,

\boxed{ \tt{16 {(x + y)}^{2}  - 25 {(x - 3y)}^{2} = (9x - 11y)(19y - x)}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2} \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {(x  -  y)}^{2} =  {x}^{2}  -  2xy +  {y}^{2} \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2}) \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {(x + y)}^{2} -  {(x - y)}^{2} = 4xy \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {a}^{m}   \div   {a}^{n}  =  {a}^{m  -  n}  \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {a}^{0} \:  =  \:   1  \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {( {a}^{m} )}^{n} \:  =  \:    {a}^{mn}   \: }}}

Similar questions