Math, asked by ankitkumar2520, 1 month ago

16000 invested at 10% p.a. compounded semi-annually amounts to 18522. Find the
time period of the investment.​

Answers

Answered by SachinGupta01
41

\bf \underline{ \underline{\maltese\:Given} }

 \sf \implies  Principal  \: (P) = Rs.  \: 16000

 \sf \implies Rate  \: of \:  interest  \: (R) = 10  \: \%  \:  \:  \: [Compounded \:  semi- annually]

 \sf \implies Rate  \: of \:  interest  \: (R) = 10  \: \%  =  \dfrac{10}{2}  = 5 \: \%

 \sf \implies Amount = Rs.  \: 18522

\bf \underline{\underline{\maltese\: To \: find }}

 \sf \implies Time  \: period  \: of  \: the  \: investment = \:  ?

\bf \underline{\underline{\maltese\: Solution }}

 \underline{  \boxed{\sf  Amount = Principal  \bigg(1+  \dfrac{Rate }{100} \bigg ) ^{Time }}}

 \sf Substituting  \: the \:  values,

\sf  \implies 18522 = 16000  \bigg(1+  \dfrac{5 }{100} \bigg ) ^{Time }

\sf  \implies  18522 = 16000  \bigg(1+  \dfrac{1}{20} \bigg ) ^{Time }

\sf  \implies  18522 = 16000  \bigg( \dfrac{20 + 1}{20} \bigg ) ^{Time }

  \sf  \implies18522 = 16000  \bigg( \dfrac{21}{20} \bigg ) ^{Time }

  \sf  \implies \cancel{ \dfrac{18522}{16000}}  =   \bigg( \dfrac{21}{20} \bigg ) ^{Time }

 \sf  \implies   \dfrac{9261}{8000} =   \bigg( \dfrac{21}{20} \bigg ) ^{Time }

 \sf  \implies    \bigg( \dfrac{21}{20} \bigg ) ^{3}=   \bigg( \dfrac{21}{20} \bigg ) ^{Time }

 \sf If  \: the \:   \bf bases  \sf \:  are \:  \bf{ same }  \sf \:  then,  \bf{index }  \sf\: will  \: also \:  be  \: equal.

 \sf  \implies   Time  = 3 \: half \:years

 \bf \underline{ Therefore},

 \underline{ \boxed{  \red{\bf Time \:  period  \: of  \: interest  \: is  \: 3 \:  half  \: years =  \dfrac{3}{2}  = 1.5 \:  Years }}}

Answered by preesanby
1

Answer:

890

560

343

is the answer

Similar questions