Math, asked by seeku3739, 3 months ago

160m³ of water is to be used to irrigate a rectangular field whose area is 800m². What will be the height of the water level in the field

Answers

Answered by WhiteDove
274

Given :-

  • Area of the rectangular field = 800m²

  • Volume of the water to irrigate 800m² rectangular field = 160m³

To Find :-

  • Height of the water level in the rectangular field

Solution :-

➻ let the length of the rectangular field be ' l ' meter

➻ And, The breadth of the field be ' b ' meter

As we know that,

Area of the rectangular field = length × breadth

\therefore\bf{l × b = 800m²}

Let the height of the water level in field be ' h 'meter

Now,

Volume = l × b × h

By substituting values,

\implies\sf{l × b × h = 160m³}

\implies\sf{800 × h =160m³(l \times b = 800 )}

\implies\sf{h = \dfrac{160}{800}m  }

\implies\sf{h =  \dfrac{1}{5} m}

\implies\mathtt{h =0.2m \: or \: 20cm \: }

Hence, The height of the water level in the field is 0.2m or 20cm

Answered by mathdude500
25

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{Area  \: of \:  the \:  rectangular  \: field =  \: 800 \: m²} \\ &\sf{Volume  \: of  \: the \:  water  \: to \:  irrigate =  \: 160 \: m³} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{Height \:  of  \: the \:  water \:  level}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf  Let :-  \begin{cases} &\sf{height  \: of \:  the  \: water \:  level \: be \:  ' h ' \: m}  \end{cases}\end{gathered}\end{gathered}

\bf \:  \bf \:   ✬  \: As  \: we \:  know \:  that,

\bf \:  ⟼ ✬ \: Volume \:  = area \:  \times  \: height

\bf\implies \: \: 160 \:  =  \: 800 \:  \times  \: h

\bf\implies \:h \:  =  \: \dfrac{ \cancel{160}}{ \cancel{800}}  = \dfrac{1}{5}  \: m

\bf\implies \:h \:  = \dfrac{1}{5}  \times 100 = 20 \: cm

☆ Hence, The height of the water level in the field is 20cm

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  Explore \:  more } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

More information

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth ²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions