Math, asked by ahmadishrak1, 6 months ago

16In the given fig.,BAC is a line. Find X Hence find angleCAE and angleBAD​

Attachments:

Answers

Answered by prince5132
12

GIVEN :-

  • BAC is a line.
  • ∠CAE = (3x - 5)°
  • ∠EAD = 55°.
  • ∠BAD = (x + 20)°

TO FIND :-

  • the value of x and the value of ∠CAE and ∠BAD .

SOLUTION :-

 \\ :   \implies \displaystyle \sf \:  \angle CAE   +  \angle BAD  +  \angle EAD = 180 ^{ \circ}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \bigg \lgroup\because \: linear \: pair \bigg \rgroup \\  \\  \\

:   \implies \displaystyle \sf \: (3x - 5) ^{ \circ}  + (x + 20) ^{ \circ}  + 55 ^{ \circ}  = 180 ^{ \circ}  \\  \\  \\

:   \implies \displaystyle \sf \: 3x - 5 + x + 20 + 55 = 180 \\  \\  \\

:   \implies \displaystyle \sf \: 3x + x + 20 - 5 + 55 = 180 \\  \\  \\

:   \implies \displaystyle \sf \: 4x + 75 - 5 = 180 \\  \\  \\

:   \implies \displaystyle \sf \: 4x + 70 = 180 \\  \\  \\

:   \implies \displaystyle \sf \: 4x = 180 - 70 \\  \\  \\

:   \implies \displaystyle \sf \: 4x = 110 \\  \\  \\

:   \implies \displaystyle \sf \: x =  \frac{110}{4}  \\  \\  \\

:   \implies \underline{ \boxed{ \displaystyle \sf \: x = 27.5}} \\  \\

Now put the value of x in ∠CAE and ∠BAD.

 \\  \\ :   \implies \displaystyle \sf \:  \angle CAE = (3x - 5) ^{ \circ}  \\  \\  \\

 :   \implies \displaystyle \sf \:  \angle CAE = (3 \times 27.5 - 5) ^{ \circ}  \\  \\  \\

 :   \implies \displaystyle \sf \:  \angle CAE = (82.5 - 5) ^{ \circ}  \\  \\  \\

:   \implies  \underline{ \boxed{\displaystyle \sf \:  \angle CAE = 77.5  ^{ \circ} }} \\  \\

Similarly,

 \\  \\ :   \implies \displaystyle \sf \:  \angle BAD = (x +  20) ^{ \circ}  \\  \\  \\

:   \implies \displaystyle \sf \:  \angle BAD = (27.5 +  20) ^{ \circ}  \\  \\  \\

:   \implies  \underline{ \boxed{\displaystyle \sf \:  \angle BAD =  47.5^{ \circ} }}

Answered by Anonymous
26

\huge\underline\mathfrak\red{Answer}

Given that -

  • BAC is a line
  • Angle EAD = 55°
  • Angle CAE = (3x-5)°
  • Angle BAD = (x+20°)

To find -

  • The value of x and the value of Angle CAE and Angle BAD.

Solution -

  • Angle CAE + Angle BAD + Angle EAD = 180° { Linear Pair }
  • ( 3x - 5° ) + ( x + 20° ) + 55° = 180°
  • 3x - 5 + x + 20 + 55 = 180
  • 3x + x + 20 - 5 + 55 = 180°
  • 4x + 75 - 5 = 180°
  • 4x + 70 = 180°
  • 4x = 180 - 70
  • 4x = 110°
  • x = 110 / 4
  • x = 27.5

Now put the value of x in Angle CAE and in Angle BAD .

  • Angle CAE = (3x+5)°
  • Angle CAE = (3 × 27.5 - 5)°
  • Angle CAE = (82.5 - 5)°
  • Angle CAE = 77.5 °

Similarly,

  • Angle BAD = (x+20)°
  • Angle BAD = (27.5 + 20)°
  • Angle BAD = 47.5°

So,

  • The value of x = 27.5 degree
  • The value of BAD = 47.5 degree
  • The value of CAE = 77.5 degree

Hope it's helpful

Thank you :)

Similar questions