Math, asked by monikathakur456jdgf, 6 months ago

16p^4-q^4 factories ​

Answers

Answered by vinshultyagi
32

\huge\sf{Solution:-}

\sf 16p^4-q^4

\sf (4p^2)^2-(q^2)^2

\sf by\: using \:identity:-

\sf \red{(a-b)(a+b)=a^2-b^2}

\sf (4p^2-q^2)(4p^2+q^2)

Answered by Anonymous
26

ɢɪᴠᴇɴ:

 \large \tt{16p^4-q^4}

ᴛᴏ ғɪɴᴅ:

Factories the given equation

sᴏʟᴜᴛɪᴏɴ:–

 \qquad \quad : \longrightarrow\tt{16 {p}^{4} - 81 {q}^{4}}

  \qquad \quad: \longrightarrow  \tt{{(4 {p}^{2}) }^{2} - {(9 {q}^{2}) }^{2}}

We will use one identity,that is :

 \quad \bull \quad \tt{ {a}^{2} - {b}^{2} = (a - b)(a + b)}

 \qquad \quad  :  \longrightarrow\tt{(4 {p}^{2} - 9 {q}^{2} )(4 {p}^{2} + 9 {y}^{2} )}\\

  \qquad \quad  :  \longrightarrow \tt{ {((2 {p}^{2}) - (3 {q}^{2} ))}(4 {p}^{2} + 9 {q}^{2} )} \\

  \qquad \quad  :  \longrightarrow   \underline{\boxed{\tt{  (2p - 3q)(2p - 3q)(4 {p}^{2} + 9 {q}^{2})}} }\\

Similar questions