16p^4-q^4 factories
Answers
♣ɢɪᴠᴇɴ:–
♣ᴛᴏ ғɪɴᴅ:–
Factories the given equation
♣sᴏʟᴜᴛɪᴏɴ:–
We will use one identity,that is :–
♣ɢɪᴠᴇɴ:–
\large \tt{16p^4-q^4}16p
4
−q
4
♣ᴛᴏ ғɪɴᴅ:–
Factories the given equation
♣sᴏʟᴜᴛɪᴏɴ:–
\qquad \quad : \longrightarrow\tt{16 {p}^{4} - 81 {q}^{4}}:⟶16p
4
−81q
4
\qquad \quad: \longrightarrow \tt{{(4 {p}^{2}) }^{2} - {(9 {q}^{2}) }^{2}}:⟶(4p
2
)
2
−(9q
2
)
2
We will use one identity,that is :–
\quad \bull \quad \tt{ {a}^{2} - {b}^{2} = (a - b)(a + b)}∙a
2
−b
2
=(a−b)(a+b)
\begin{gathered} \qquad \quad : \longrightarrow\tt{(4 {p}^{2} - 9 {q}^{2} )(4 {p}^{2} + 9 {y}^{2} )}\\\end{gathered}
:⟶(4p
2
−9q
2
)(4p
2
+9y
2
)
\begin{gathered} \qquad \quad : \longrightarrow \tt{ {((2 {p}^{2}) - (3 {q}^{2} ))}(4 {p}^{2} + 9 {q}^{2} )} \\\end{gathered}
:⟶((2p
2
)−(3q
2
))(4p
2
+9q
2
)
\begin{gathered} \qquad \quad : \longrightarrow \underline{\boxed{\tt{ (2p - 3q)(2p - 3q)(4 {p}^{2} + 9 {q}^{2})}} }\\\end{gathered}
:⟶
(2p−3q)(2p−3q)(4p
2
+9q
2
)