16x^4-y^4 factorise easy method
Answers
Answered by
2
Answer:
16x^4-y^4
=(4x^2)^2 - (y^2)^2
={(2x)^2}^2-(y^2)^2
Here applies the identity of a^2-b^2 = (a+b)(a-b) where:
a^2={(2x)^2}^2 and b={y^2}^2
So, a=(2x)^2 and b=y^2
Then, {(2x)^2 + y^2} {(2x)^2 - y^2}
Therefore,
16x^4-y^4 will be factorized as {(2x)^2 + y^2} {(2x)^2 - y^2}
Answered by
1
Answer:
{(2x)^2 + y^2} {(2x)^2 - y^2}
Step-by-step explanation:
16x^4-y^4
=(4x^2)^2 - (y^2)^2
={(2x)^2}^2-(y^2)^2
Here applies the identity of a^2-b^2 = (a+b)(a-b) where:
a^2={(2x)^2}^2 and b={y^2}^2
So, a=(2x)^2 and b=y^2
Then, {(2x)^2 + y^2} {(2x)^2 - y^2}.
Therefore,
16x^4-y^4 will be factorized as {(2x)^2 + y^2} {(2x)^2 - y^2}.
Hope this Helps you.
Please mark it as a Brainliest Answer.
Similar questions