Math, asked by pooja4168, 3 months ago

16x⁴-72x²+81>0is true for
true for
a All real values of x
b No real value of x
c al values of x Except two
values

d only for two values of se​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:f(x) =  {16x}^{4} -  {72x}^{2} + 81

\rm :\longmapsto\:f(x) =  {16x}^{4} -  {36x}^{2}  - 36 {x}^{2} + 81

\rm :\longmapsto\:f(x) =  {4x}^{2}( {4x}^{2} - 9) - 9( {4x}^{2} - 9)

\rm :\longmapsto\:f(x) = ( {4x}^{2} - 9)( {4x}^{2} - 9)

\rm :\longmapsto\:f(x) =  {\bigg(4 {x}^{2} - 9\bigg) }^{2}

\rm :\longmapsto\:f(x) =  {\bigg({(2x)}^{2} -  {(3)}^{2} \bigg) }^{2}

\rm :\longmapsto\:f(x) =  {\bigg((2x + 3)(2x - 3)\bigg) }^{2}

\rm :\longmapsto\:f(x) =  {(2x - 3)}^{2} {(2x + 3)}^{2}

\rm :\implies\:f(x) = 0 \: when \: x = \dfrac{3}{2}  \: or \: \dfrac{ - 3}{2}

\rm :\longmapsto\:f(x) > 0 \: when \: x  \ne \: \dfrac{3}{2}, \dfrac{ - 3}{2}

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf \: Option \: (c) \: is \: correct}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions