Physics, asked by hermainimtiaz, 2 days ago

17. A ball is projected at 45° and its horizontal range in 10 m. velocity of projection is A) 7/3m ms1 C 9.6 ms1 B) 15 ms 1 D), 773m ms1​

Answers

Answered by Shivayalaya
0

Answer:

velocity of projection is about 10

Attachments:
Answered by pradhanmadhumita2021
14

 \sf Given  \\\sf\longrightarrow\thetaθ = 45° \\ \sf⟶ R = 10m \\ \sf where \\\sf\longrightarrow\thetaθ  \: is \:  the  \: angle  \: of \:  projection.\\\sf\longrightarrow R \:  is \:  range. \\ \sf To  \: find - \\\sf Maximum  \: height \:  \longrightarrow H \:\\\sf Formula used -\\\sf{R = \frac{ {u}^{2} \sin2 \theta }{g} } \\\sf{H = \frac{ {u}^{2} \sin^{2} \theta }{2g} } \\\sf where \\\sf \longrightarrow R \:  is \:  range.\\\sf\longrightarrow u  \: is \: initial\: velocity. \\\sf\longrightarrow g  \: is  \: acceleration \:  due \:  to  \: gravity. \\\sf\longrightarrow H \:  is \:  maximum \:  height.\\\sf\longrightarrow\thetaθ  \: is  \: the \:  angle  \: of \:  projection. \\\sf Solution \\\sf Substituting \:  the \:  value \:  in\\\sf{R = \frac{{u}^{2} \sin2 \theta }{g}}\\\implies\sf{10 = \frac{{u}^{2} \sin2(45)}{10}} \\\implies\sf{10 = \frac{ {u}^{2} }{10}}\\\implies\sf{{u}^{2} = 10 \times 10} \\\implies \sf{u = 10 m/s } \\\sf\longrightarrow R = 10  \: m \\\sf\longrightarrow u = 10  \: m/s\\\sf\longrightarrow \thetaθ = 45°\\\sf{Substituting  \: the \:  value  \: in}\\\sf{H = \frac{ {u}^{2} \sin^{2} \theta }{2g}}\\\implies \sf{H = \frac{ {10}^{2} \times \sin^{2} 45}{2 \times 10}}\\\implies\sf{\frac{100}{20} } \\\implies\sf{H = 5m }

Similar questions