Physics, asked by meunim, 1 year ago

17. A body of mass 1 kg is moving with velocity
V; = (i - 2j - 3Â) m/s and after 10 s velocity of
body becomes vf= (-3i +2j - k) m/s. The
magnitude of change in momentum of the body
(1) 4 kg m/s
(3) 4√3 kg m/s
(2) -8/3 kg m/s
(4) 12 kg m/s​

Answers

Answered by mahiee
0

Answer:

the answer is nt listed in the above options its 6

Answered by jitumahi89
0

Answer:

The  magnitude of change in momentum of the body=\sqrt{-4^{2}+4^{2}+2^{2}  }=\sqrt{36} = 6\ kg m/s

Explanation:

Since momentum is the quantity of motion which is performed by the body.

we know that momentum P = mv

where m = mass of the body, v = velocity of the body.

we have m = 1 kg

initial velocity = v_{i} = \hat{i}-2\hat{j}-3\hat{k}

final velocity = v_{f} = -3 \hat{i}+2\hat{j}-\hat{k}

So, initial momentum=m\times\ initial\ velocity=1\times\ (\hat{i}-2\hat{j}-3\hat{k})

                                    = (\hat{i}-2\hat{j}-3\hat{k})

Final momentum =1\times\ -3 \hat{i}+2\hat{j}-\hat{k}

                            = (-3 \hat{i}+2\hat{j}-\hat{k})

So change in momentum =final momentum - initial momentum

                                        =(-3 \hat{i}+2\hat{j}-\hat{k})\ -\ (\hat{i}-2\hat{j}-3\hat{k})

                                         =(-4 \hat{i}+4\hat{j}+2\hat{k})

The  magnitude of change in momentum of the body=\sqrt{-4^{2}+4^{2}+2^{2}  }=\sqrt{36} = 6\ kg m/s

Similar questions