Math, asked by theyogeshwaran007, 4 months ago

17. Evaluate: integrate (root tan x - root cotx) dx

Attachments:

Answers

Answered by Asterinn
19

 \rm \longrightarrow \displaystyle \int  \rm \:( \sqrt{tan \: x}    \: \:  - \sqrt{cot \: x}  )  dx

\rm \longrightarrow \displaystyle \int  \rm \bigg(  \frac{ \sqrt{sin \: x} }{ \sqrt{cos \: x} }   \: \:  -\frac{ \sqrt{ cos\: x} }{ \sqrt{sin \: x} }   \bigg )  dx

\rm \longrightarrow \displaystyle \int  \rm \bigg(  \dfrac{ {sin \: x}  - cos \: x}{ \sqrt{sin \: x \: cos \: x} }   \: \bigg)  dx

\rm \longrightarrow \displaystyle \int  \rm  \dfrac{  \sqrt{2} ({sin \: x}  - cos \: x)}{ \sqrt{2 \: sin \: x \: cos \: x} }    \:   dx

Now , 2 sinx cosx = ( sinx + cosx )² - 1

\rm \longrightarrow \displaystyle \int  \rm  \dfrac{  \sqrt{2} ({sin \: x}  - cos \: x)}{ \sqrt{ {(sin \: x  +  cos \: x)}^{2}  - 1} }    \:   dx

\rm \longrightarrow \sqrt{2}\displaystyle \int  \rm  \dfrac{   ({sin \: x}  - cos \: x)}{ \sqrt{ {(sin \: x  +  cos \: x)}^{2}  - 1} }    \:   dx

Let , sinx + cosx = t

➡️(cosx - sinx ) dx = dt

➡️(- cosx + sinx ) dx = - dt

\rm \longrightarrow \sqrt{2}\displaystyle \int  \rm  \dfrac{   - dt}{ \sqrt{ {t}^{2}  - 1} }

\rm \longrightarrow \sqrt{2}\displaystyle \int  \rm  \dfrac{   - dt}{ \sqrt{ {t}^{2}  - 1} }     =   -  \: \sqrt{2}  \bigg( log \bigg|t +  \sqrt{ {t}^{2} - 1 }\bigg|   \bigg) + c

Now , put t = sinx + cosx

\rm \longrightarrow  -  \: \sqrt{2}    \: log \bigg|sin \: x + cos \: x +  \sqrt{ {(sin \: x + cos \: x)}^{2} - 1 }\bigg|   + c

\rm \longrightarrow  -  \: \sqrt{2}    \: log \bigg|sin \: x + cos \: x +  \sqrt{ 2 \: cos \:  \: sin \: x }\bigg|   + c


IdyllicAurora: Nice
Asterinn: Thank you!
Similar questions