17. Factorise (2x – 3y)³ + (3y – 4z)³ + (4z – 2x)³
Answers
Answered by
7
Answer:
3(2x - 3y)(3y - 4z)(4z - 2x)
Note:
★ (a + b)² = a² + b² + 2ab
★ (a - b)² = a² + b² - 2ab
★ (a + b)(a - b) = a² - b²
★ (a + b)³ = a³ + b³ + 3ab(a + b)
★ (a - b)³ = a³ - b³ - 3ab(a - b)
★ a³ + b³ = (a + b)(a² + b² - ab)
★ a³ - b³ = (a - b)(a² + b² + ab)
★ a³ + b³ + c³ - 3abc
= (a + b + c)(a² + b² + c³ - ab - bc - ca)
★ If a + b + c = 0 , then ;
a³ + b³ + c³ = 3abc
Solution:
We need to factorize :
(2x – 3y)³ + (3y – 4z)³ + (4z – 2x)³
Let ,
a = 2x - 3y
b = 3y - 4z
c = 4z - 2x
Clearly,
a + b + c = 2x - 3y + 3y - 4z + 4z - 2x
a + b + c = 0
Hence,
=> a³ + b³ + c³ = 3abc
=> (2x – 3y)³ + (3y – 4z)³ + (4z – 2x)³
= 3(2x - 3y)(3y - 4z)(4z - 2x)
Hence,
Required answer is :
3(2x - 3y)(3y - 4z)(4z - 2x)
Similar questions
Biology,
5 months ago
Science,
5 months ago
Math,
11 months ago
Social Sciences,
11 months ago
English,
1 year ago
Science,
1 year ago
Social Sciences,
1 year ago