Math, asked by singharajdeep038, 1 month ago

17. Find the equation of the ellipse whose foci are (+2,0) and the eccentricity 1 is 2​

Answers

Answered by senboni123456
3

Step-by-step explanation:

Given foci are (±2,0) and eccentricity \sf{e=\dfrac{1}{2}}

Now,

 \sf{ ae = 2}

 \sf{  \implies \: a \cdot \dfrac{1}{2} = 2}

 \sf{  \implies \: a= 4}

Also,

  \sf{{e}^{2} =  \dfrac{1}{4}}

  \sf{ \implies1 -  \dfrac{{b}^{2} }{a^{2} }=  \dfrac{1}{4}}

  \sf{ \implies1 -  \dfrac{{b}^{2} }{16 }=  \dfrac{1}{4}}

  \sf{ \implies  \dfrac{16 - {b}^{2} }{16 }=  \dfrac{1}{4}}

  \sf{ \implies  16 - {b}^{2} =  \dfrac{16}{4}}

  \sf{ \implies  16 - {b}^{2} =  4}

  \sf{ \implies   {b}^{2} = 12}

Now,

Equation of ellipse is

  \sf{\dfrac{x^{2} }{ {a}^{2} }  +  \dfrac{ {y}^{2} }{ {b}^{2} }  = 1}

  \sf{ \implies\dfrac{x^{2} }{16 }  +  \dfrac{ {y}^{2} }{ 12 }  = 1}

Similar questions