17. For what value of m, the equation x^2 -mx + m + 1 = 0 may have its roots in the ratio 2 : 3
Answers
Answered by
3
Answer:-
m = 5 (or) -5/6
Expln:-
Roots in ratio 2:3
Then roots are 2a, 3a
Quadratic polynomial is in the form of,
f(x) = x²-(a+b)x+ab = 0 ..(1)
Given equ, x²-mx+(m+1) = 0
Frm (1),
a+b = m
2a+3a = m
5a = m ..(2)
ab = m+1
(2a)(3a)-1 = m
6a²-1 = m ..(3)
equ (2) and (3) are equal,
6a²-1 = 5a
6a²-5a-1 = 0
6a²-6a+a-1 = 0
6a(a-1)+1(a-1) = 0
(a-1)(6a+1) = 0
a = 1 (or) -1/6. in equ (2),
a = 1, 5a = m
m = 5
a = -1/6,
5(-1/6) = m
m = -5/6
Similar questions