Math, asked by gaurishri665, 6 months ago

17-If 4 tan x=3, then 4sinx-
COSX/4sinx+COS X):
O 2/3
O 1/3
O 1/2
O
3/4​

Answers

Answered by nidhithakur1234
3

Step-by-step explanation:

4tanx = 3

tanx = 3/4

p/b =3/4

h^2=p^2+b^2

h^2=(3)^2+(4)^2

h^2=9+16

h^2=25

h=5

sinx=3/5

cosx=4/5

4sinx-cosx/4sinx+cosx

(4×3/5-4/5)/4×3/5+4/5

(12/5-4/5)/12/5+4/5

(8/5)/16/5

8/16

1/2 is the answer

Answered by pulakmath007
1

SOLUTION

TO CHOOSE THE CORRECT OPTION

If 4 tan x = 3 then

 \displaystyle \sf{ \frac{4 \sin x  -  \cos x }{4 \sin x   +  \cos x } }

  •  \displaystyle \sf{ \frac{2}{3}  }

  •  \displaystyle \sf{ \frac{1}{3}  }

  •  \displaystyle \sf{ \frac{1}{2}  }

  •  \displaystyle \sf{ \frac{3}{4}  }

EVALUATION

Here it is given that

4 tan x = 3

Now

 \displaystyle \sf{ \frac{4 \sin x  -  \cos x }{4 \sin x   +  \cos x } }

Dividing both of the numerator and denominator by cos x we get

 \displaystyle \sf{  = \frac{4  \dfrac{\sin x}{ \cos x}  -  \dfrac{ \cos x}{ \cos x}  }{4  \dfrac{\sin x}{ \cos x}   +  \dfrac{ \cos  x}{ \cos  x}} }

 \displaystyle \sf{  = \frac{4 \tan  x  - 1}{4 \tan  x +  1 }  }

 \displaystyle \sf{  = \frac{3 - 1}{3  +  1}  }

 \displaystyle \sf{  = \frac{2}{4}  }

 \displaystyle \sf{  = \frac{1}{2}  }

FINAL ANSWER

Hence the correct option is  \displaystyle \sf{ \frac{1}{2}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions