17. If A = B = 45°, verify that:
cos (A - B) = cos A cos B + sin A sin B
Answers
Answered by
6
Answer:
Given ∠A=∠B=45
∘
sin(A+B)=sin(45
∘
+45
∘
)=sin90
∘
=1
sinAcosB+sinBcosA=sin45
∘
cos45
∘
+sin45
∘
cos45
∘
=2sin45
∘
cos45
∘
=2×
2
1
×
2
1
=1
⟹sin(A+B)=sinAcosB+cosAsinB
Answered by
0
Step-by-step explanation:
cos(A-B) =cos (45-45)= cos 0
cos 0 =1
LHS =1
cosA cosB + sinA sinB =
cos A cosB= 1/√2*1/√2=1/2
sinA sinB = 1/√2*1/√2= 1/2
1/2+1/2=1
RHS=1
LHS=RHS hence verified
Similar questions