17. If cosec theta = √5 find the value of :
(i)
(ii)
Answers
1 - 1ans
2- 3 ans
umeed hein apko isse samjh aa. gaya ho☺️☺️
Step-by-step explanation:
Given,
cosec ∅ = √5
let,
cosec∅ = √5/1
Let,
AC = √5,BC = 1,AB = ?
According to PHYTHAGAROUS THEROM,
(Hypotenuse)² = (opp.side)²+(adj.side)²
(AC)² = (AB)² + (BC)²
(√5)² = (AB)² + (1)²
5 = (AB)² + 1
5-1 = (AB)²
4 = (AB)²
√4 = AB
√2×2 = AB
:. AB = 2 units
Now consider,
Sin∅ = opp.side/Hyp = BC/AB = 1/√5
Cos∅ = adj.side/Hyp = AB/AC = 2/√5
Now consider,
(i) 2-sin²∅-cos²∅
=> 2-(1/√5)² - (2/√5)²
=> 2 - (1/5) - (4/5)
=> (10-1-4)/5
=> 5/5
=>1
:. 2-sin²∅-cos²∅ = 1
Now consider,
(ii) 2+(1/sin²∅)-(cos²∅/sin²∅)
=> 2 + (1-cos²∅)/sin²∅
=> 2 + [1-(2/√5)²]/(1/√5)²
=> 2 + [1-(4/5)]/(1/5)
=> 2 + [(5-4)/5]/(1/5)
=> 2 + (1/5)/(1/5)
=> 2 + (1/5 × 5/1)
=> 2 + (5/5)
=> 2 + 1
=> 3
:. 2+(1/sin²∅)-(cos²∅/sin²∅) = 3.
I hope it helps you.