Math, asked by artidesai156, 1 month ago

17. If the zerors of the polynomial
 {x}^{3}  -   {3x}^{2}  + x + 1
+ x+ 1 are a - b, a, a + b, find a and b.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:f(x) =  {x}^{3} - 3 {x}^{2} + x + 1

Now, given that

\rm :\longmapsto\:a - b, \: a, \: a + b \: are \: zeroes \: of \: f(x).

We know, In cubic polynomial,

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

So, using this identity we get

\rm :\longmapsto\:a - b + a + a + b =  -  \: \dfrac{( - 3)}{1}

\rm :\longmapsto\:3a = 3

\bf\implies \:a = 1

Also, In cubic Polynomial

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

So, using this we get

\rm :\longmapsto\:(a - b)a(a + b) =  -  \: \dfrac{1}{1}

On substituting the value of a = 1, we get

\rm :\longmapsto\:(1 - b)(1)(1+ b) =  - 1

\rm :\longmapsto\:1 -  {b}^{2} =  - 1

\rm :\longmapsto\: -  {b}^{2} =  - 1 - 1

\rm :\longmapsto\: -  {b}^{2} =  - 2

\rm :\longmapsto\:  {b}^{2} =  2

\bf\implies \:b  \: =  \:  \pm \:  \sqrt{2}

Hence,

 \purple{\boxed{ \bf{ a  \: =  \: 1 \:  \:  \: and \:  \:  \: b  \: =  \:  \pm \:  \sqrt{2} }}}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta   \: are \: zeroes \: of \: a {x}^{2}  + b {x} +  c, \: then}

\boxed{ \bf{ \:  \alpha   + \beta    =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta    =  \dfrac{c}{a}}}

Similar questions