Math, asked by MSSINGH13, 8 months ago

17. In A ABC, AB = AC and the bisectors of
angles B and C intersect at point O. Prove
that :
(i) BO = CO
(ii) AO bisects angle BAC.

note: there is no figure provided​

Answers

Answered by ssinghvart
2

Step-by-step explanation:

Since the angles opposite to equal sides are equal,

∴AB=AC

⇒∠C=∠B

2

∠B

=

2

∠C

.

Since BO and CO are bisectors of ∠B and ∠C, we also have

∠ABO=

2

∠B

and ∠ACO=

2

∠C

.

∠ABO=

2

∠B

=

2

∠C

=∠ACO.

Consider △BCO:

∠OBC=∠OCB

⇒BO=CO ....... [Sides opposite to equal angles are equal]

Finally, consider triangles ABO and ACO.

BA=CA ...... (given);

BO=CO ...... (proved);

∠ABO=∠ACO (proved).

Hence, by S.A.S postulate

△ABO≅△ACO

⇒∠BAO=∠CAO⇒AO bisects ∠A.

Answered By Rashmi kushwaha

please follow me

Answered by Anonymous
2

\sf \: To \:  prove :- \\ \sf i) \: BO = CO \\ \sf ii) \: AO \: bisects \:  \angle \: BAC

 \sf  \: Construction :- \\  \sf \: Draw  \: AF\perp \: BC.

 \sf \: Proof :- \\  \sf \: In \:  \triangle \: BOE \:  and \: \triangle \: COD, \\ \sf \:  BE \:  =  \: CD \: (given) \\  \sf \: \angle \: BOE =  \:  \angle \: COD \: (vert. \: oppo. \angle) \\  \sf \angle \: EBO \:  =  \:  \angle \: DCO \: ( \angle \: EBO \:  +  \angle \:  OBF\:  =  \: \angle \: DCO  \:  +  \angle \: OCF) \\  \\   \sf\therefore \: \triangle \: BOE \:   \cong \: \triangle \: COD  \: (A.S.A)\\  \sf i)\therefore \: BO \:  =  \: OC \: (C.P.C.T)  \\  \\  \sf \: In  \:  \triangle \: ABF \:  and  \:  \triangle \: ACF, \\  \sf \: AB \:  =  \:  AC \: (given) \\  \sf \: AF \:  =  \: AF \: (common) \\  \sf \angle \: ABF \:  =  \:  \angle \: ACF \: ( bisects \: \angle \: A \: and \:  \angle \: C) \\  \sf \therefore \: \triangle \: ABF \:  \cong\:  \triangle \: ACF \: (S.A.S) \\  \sf ii)\therefore \: AF \: bisects \:  \angle \: A... \:  \:  \: (hence \: proved)

Attachments:
Similar questions