Math, asked by AbdulWahabKhan01, 9 months ago

17. Integrate sin x* e^cosx dx
A) e^sinx + C
C) -e^cosx + C
B) e^cosx + C
D) -e^sinx+C​

Answers

Answered by shadowsabers03
6

We're asked to evaluate,

\displaystyle\longrightarrow I=\int\sin x\cdot e^{\cos x}\ dx\quad\quad\dots(1)

Substitute,

\displaystyle\longrightarrow u=e^{\cos x}\quad\quad\dots(2)

\displaystyle\longrightarrow du=d(e^{\cos x})

\displaystyle\longrightarrow du=e^{\cos x}\cdot-\sin x\ dx

\displaystyle\longrightarrow -du=e^{\cos x}\cdot\sin x\ dx

\displaystyle\longrightarrow \sin x\cdot e^{\cos x}\ dx=-du

Then (1) becomes,

\displaystyle\longrightarrow I=\int-du

\displaystyle\longrightarrow I=-\int du

\displaystyle\longrightarrow I=-u+C

From (2),

\displaystyle\longrightarrow\underline{\underline{I=-e^{\cos x}+C}}

Hence (C) is the answer.

Similar questions