Math, asked by sagnik200549, 9 months ago

17. Let x1, x2, x3 be the roots of the equation x + 3x + 5 = 0. What is the value of the expression
(x1+1/x1)(x2+1/x2)(x3+1/x3)?​

Answers

Answered by Agastya0606
6

Given: x1, x2, x3 be the roots of the equation x³ + 3x + 5 = 0.

To find: Value of the expression (x1+1/x1)(x2+1/x2)(x3+1/x3)

Solution:

  • As we have given the equation, x³ + 3x + 5 = 0 and roots as x1, x2, x3, so:

            x1 + x2 + x3 = -b/a = 0

            x1x2 + x2x3 + x1x3 = c/a = 3

            x1x2x3 = -d/a = -5

  • So now, we have to find value of:

           (x1+1/x1) (x2+1/x2) (x3+1/x3)

  • Simplifying it, we get:

           ((x1²+1)/x1) x ((x2²+1)/x2) x ((x3²+1)/x3)

           (x1²+1)(x2²+1)(x3²+1) / x1x2x3

           (x1²x2² + x1² + x2² + 1) (x3²+1) / x1x2x3

           (x1²x2²x3² + x1²x2² +  x1²x3² +  x1² +  x2²x3² +  x2² + x3² + 1) /  x1x2x3

  • Now  we know the formula of (a+b+c)² = (a²+b²+c² +2ab+2bc+2ca)
  • So we can write (x1²x2² + x1²x3² + x2²x3²) as

           (x1²x2²x3² +  x1²+  x2² + x3² + 1 +{ (x1x2 +x2x3 + x1x3)² - 2(x1x2x2x3 + x1x3x3x2 + x2x3x1x1 } ) /  x1x2x3

  • Now putting the values on this, we get:

           (-5)² + x1²+  x2² + x3² + 1 + { (3)² - 2((-5)x2 + (-5)x3 + (-5)x1 } ) / -5

           25 + x1²+  x2² + x3² + 1 + (9 + 10x2 + 10x3 + 10x1) / -5

           25 + x1²+  x2² + x3² + 1 + 9 + 10x2 + 10x3 + 10x1 / -5

           35 + x1²+  x2² + x3² + 10(x1 + x2 + x3) / -5

  • Now  again using the formula of (a+b+c)² = (a²+b²+c² +2ab+2bc+2ca)

           35 + (x1+x2+x3)² - 2(x1x2+x2x3+x1x3) + 10(x1 + x2 + x3) / -5

           35 + 0 - 2(3) + 10(0) / -5

           35 - 6 / -5

           29 / -5

           -29/5

Answer:

        So the value of the expression (x1+1/x1)(x2+1/x2)(x3+1/x3) is -29/5

Answered by 4rajashekar4
0

Answer:

Step-by-step explanation:

Hope it helps u!....

Attachments:
Similar questions