Math, asked by cristianoali786, 11 months ago

17) Prove That Cos 20 Cos 40 Cos 60 Сos 80 = 1/16

Answers

Answered by IamIronMan0
0

Step-by-step explanation:

Formula used

 2\sin( \theta)  \cos( \theta)  =  \sin(2 \theta)

Now you question

 \:\: \cos(20).  \cos(40) .  \cos(60)  . \cos(80)  \\  \\   =  \cos(20).  \cos(40) . \frac{1}{2} . \cos(80)  \\  \\  =  \frac{1}{2 \times 2 \sin(20) } (2 \sin(20)  \cos(20) ). \cos(40) . \cos(80)  \\  \\  =  \frac{1}{4 \sin(20) } ( \sin(40)  \cos(40) ). \cos(80)   \\ \\  =  \frac{1}{4 \sin(20) }  \times  \frac{1}{2} (2 \sin(40)  \cos(40) ). \cos(80) \\   \\  =  \frac{1}{8 \sin(20) } ( \sin(80)   \cos(80))   \\ \\  =  \frac{1}{16 \sin(20) }  \sin(160)  \\  \\  =  \frac{1}{16 \sin(20) }  \sin(180 - 20)  \\  =  \frac{1}{16 \cancel { \sin(20) }} \cancel { \sin(20) } \\   \\ =  \frac{1}{16}

Similar questions